login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177099
a(n) = 81*n^2 + 2*n.
4
83, 328, 735, 1304, 2035, 2928, 3983, 5200, 6579, 8120, 9823, 11688, 13715, 15904, 18255, 20768, 23443, 26280, 29279, 32440, 35763, 39248, 42895, 46704, 50675, 54808, 59103, 63560, 68179, 72960, 77903, 83008, 88275, 93704, 99295, 105048, 110963, 117040, 123279, 129680, 136243, 142968, 149855, 156904, 164115
OFFSET
1,1
COMMENTS
The identity (81*n + 1)^2 - (81*n^2 + 2*n)*9^2 = 1 can be written as A158123(n)^2 - a(n)*9^2 = 1 (see Barbeau's paper in link). - Vincenzo Librandi, Feb 03 2012
Also, the identity (13122*n^2 + 324*n + 1)^2 - (81*n^2 + 2*n)*(1458*n + 18)^2 = 1 can be written as A157506(n)^2 - a(n)*A157505(n)^2 = 1. - Vincenzo Librandi, Feb 04 2012
This last formula is the case s=9 of the identity (2*s^4*n^2 + 4*s^2*n + 1)^2 - (s^2*n^2 + 2*n)*(2*s^3*n + 2*s)^2 = 1. - Bruno Berselli, Feb 04 2011
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(9^2*t+2)).
FORMULA
G.f.: x*(-79*x - 83)/(x - 1)^3. - Harvey P. Dale, Mar 23 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 03 2012
MATHEMATICA
Table[81n^2+2n, {n, 50}] (* Harvey P. Dale, Mar 23 2011 *)
LinearRecurrence[{3, -3, 1}, {83, 328, 735}, 40] (* Vincenzo Librandi, Feb 03 2012 *)
PROG
(Magma) [ 81*n^2+2*n: n in [1..50] ];
(PARI) for(n=1, 50, print1(81*n^2+2*n", ")); \\ Vincenzo Librandi, Feb 03 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 18 2010
EXTENSIONS
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
STATUS
approved