The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327850 Nontrivial odd solutions n to P(n) == 1 + r*Sum_{i=1..d(n)} x^i (mod m) where P(n) is the n-th Stern polynomial, d(n) is the degree of P(n), r=2, m=3. 2
 83, 359, 631, 2633, 37579, 43411, 52409, 80723, 374383, 10717481, 23629421, 26528431, 44767195 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Here, nontrivial means solutions neither of the form 2^(k+1)-1 nor of the form 2^(k+2)-3. LINKS Maciej Ulas, Strong arithmetic property of certain Stern polynomials, arXiv:1909.10844 [math.NT], 2019. See Table 4 p. 12. PROG (PARI) pol(n) = {if (n<2, return (n)); if (n%2, pol((n+1)/2) + pol((n-1)/2), x*pol(n/2)); } \\ A125184 ispow2(n) = if ((n==1) || (n==2), return (1)); my(p); isprimepower(n, &p) && (p==2); istrivial(n) = ispow2(n+1) || ispow2(n+3); isokrm(n, r, m) = {if ((n%2) && !istrivial(n), my(p=pol(n), d=poldegree(p)); Mod(p, m) == Mod(1+r*sum(i=1, d, x^i), m); ); } lista(nn) = forstep(n=1, nn, 2, if (isokrm(n, 2, 3), print1(n, ", "))); CROSSREFS Cf. A125184 (Stern polynomials), A327848, A327849. Sequence in context: A341338 A031433 A177099 * A061525 A293979 A340861 Adjacent sequences:  A327847 A327848 A327849 * A327851 A327852 A327853 KEYWORD nonn,more AUTHOR Michel Marcus, Sep 28 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 21:50 EDT 2021. Contains 345433 sequences. (Running on oeis4.)