login
A327851
Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A111374.
2
1, 1, 2, 2, 4, 4, 6, 8, 12, 15, 19, 24, 30, 36, 47, 57, 74, 88, 112, 130, 160, 190, 232, 277, 333, 399, 471, 554, 656, 768, 908, 1060, 1256, 1452, 1702, 1968, 2294, 2646, 3068, 3549, 4093, 4710, 5418, 6211, 7121, 8138, 9331, 10625, 12150, 13817, 15749, 17858, 20290, 23000, 26054
OFFSET
0,3
COMMENTS
a(n) > 0.
LINKS
FORMULA
G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(8*j-3))) * (1-x^(i*(8*j-5))) / ((1-x^(i*(8*j-1))) * (1-x^(i*(8*j-7)))).
G.f.: Product_{k>=1} (1-x^k)^(-A035185(k)).
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[QPochhammer[x^(8*j - 3)] * QPochhammer[x^(8*j - 5)]/(QPochhammer[x^(8*j - 7)] * QPochhammer[x^(8*j - 1)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(2, d))))
CROSSREFS
Convolution inverse of A327852.
Product_{k>=1} (1 - x^k)^(- Sum_{d|k} (b/d)), where (m/n) is the Kronecker symbol: this sequence (b=2), A107742 (b=4), A327716 (b=5).
Sequence in context: A264393 A362307 A094858 * A029940 A045674 A276065
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 28 2019
STATUS
approved