This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264393 Number of partitions of n having no perfect cube parts (n>=0). 5
 1, 0, 1, 1, 2, 2, 4, 4, 6, 8, 11, 13, 19, 22, 30, 37, 48, 58, 76, 91, 116, 141, 176, 212, 265, 317, 390, 468, 571, 681, 828, 983, 1185, 1407, 1685, 1993, 2378, 2802, 3326, 3913, 4624, 5421, 6387, 7466, 8762, 10223, 11955, 13910, 16225, 18831, 21898, 25365 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) = A264391(n,0). Convolution of A279484 and A000041. - Vaclav Kotesovec, Dec 30 2016 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 FORMULA G.f.: Product_{i>=1}(1-x^(h(i)))/(1-x^i), where h(i) = i^3. a(n) ~ exp(Pi*sqrt(2*n/3) - 2^(1/6) * Gamma(1/3) * Zeta(4/3) * n^(1/6) / (3^(5/6) * Pi^(1/3))) * Pi / (6^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016 EXAMPLE a(7) = 4 because we have [7], [5,2], [4,3], and [3,2,2]. MAPLE h := proc (i) options operator, arrow; i^3 end proc: g := product((1-x^h(i))/(1-x^i), i = 1 .. 150): gser := series(g, x = 0, 65): seq(coeff(gser, x, n), n = 0 .. 60); MATHEMATICA nmax=100; CoefficientList[Series[Product[(1-x^(k^3))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 30 2016 *) CROSSREFS Cf. A264391, A279484. Sequence in context: A240012 A295261 A293627 * A094858 A029940 A045674 Adjacent sequences:  A264390 A264391 A264392 * A264394 A264395 A264396 KEYWORD nonn AUTHOR Emeric Deutsch, Nov 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 15:53 EST 2019. Contains 319195 sequences. (Running on oeis4.)