login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279484 Expansion of Product_{k>=1} (1-x^(k^3)). 6
1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

COMMENTS

The difference between the number of partitions of n into an even number of distinct cubes and the number of partitions of n into an odd number of distinct cubes. - Ilya Gutkovskiy, Jan 15 2018

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..100000

MATHEMATICA

nn = 10; CoefficientList[Series[Product[(1-x^(k^3)), {k, nn}], {x, 0, nn^3}], x]

nmax = 1000; nn = Floor[nmax^(1/3)]+1; poly = ConstantArray[0, nn^3 + 1]; poly[[1]] = 1; poly[[2]] = -1; poly[[3]] = 0; Do[Do[poly[[j + 1]] -= poly[[j - k^3 + 1]], {j, nn^3, k^3, -1}]; , {k, 2, nn}]; Take[poly, nmax+1]

CROSSREFS

Cf. A010815, A276516.

Cf. A000009, A033461, A279329.

Cf. A279486.

Sequence in context: A010057 A204220 A281814 * A279329 A292438 A244525

Adjacent sequences:  A279481 A279482 A279483 * A279485 A279486 A279487

KEYWORD

sign

AUTHOR

Vaclav Kotesovec, Dec 13 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 12:19 EDT 2019. Contains 327307 sequences. (Running on oeis4.)