login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279329
Number of partitions of n into distinct cubes.
34
1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0
COMMENTS
In general, if m > 0 and g.f. = Product_{k>=1} (1 + x^(k^m)), then a(n) ~ exp((m+1) * ((2^(1/m)-1) * Gamma(1/m) * Zeta(1+1/m) / m^2)^(m/(m+1)) * (n/2)^(1/(m+1))) * ((2^(1/m)-1) * Gamma(1/m) * Zeta(1+1/m))^(m/(2*(m+1))) / (sqrt((m+1)*Pi) * 2^((2*m+3)/(2*(m+1))) * m^((m-1)/(2*(m+1))) * n^((2*m+1)/(2*(m+1)))).
a(12758) = 0 is the last zero in this sequence. - Antti Karttunen, Aug 30 2017
FORMULA
G.f.: Product_{k>=1} (1 + x^(k^3)).
a(n) ~ exp(2^(7/4) * 3^(-3/2) * ((2^(1/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4)) * ((2^(1/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/8) / (2^(17/8) * 3^(1/4) * sqrt(Pi) * n^(7/8)).
For n >= 1, a(n) = A280130(n-1) + A280130(n). - Antti Karttunen, Aug 30 2017, after Vaclav Kotesovec's Dec 26 2016 formula in the latter sequence.
EXAMPLE
a(9) = 1 because we have one solution, [8, 1].
a(216) = 2 because we have two solutions: 216 = 6^3 = 5^3 + 4^3 + 3^3. This is also the first point where the sequence obtains value larger than one. - Antti Karttunen, Aug 30 2017
MATHEMATICA
nmax = 10; CoefficientList[Series[Product[(1+x^(k^3)), {k, 1, nmax}], {x, 0, nmax^3}], x]
nmax = 10; poly = ConstantArray[0, nmax^3 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^3 + 1]], {j, nmax^3, k^3, -1}]; , {k, 2, nmax}]; poly
PROG
(PARI) A279329(n, m=1) = { my(s=0); if(!n, 1, for(c=m, n, if(ispower(c, 3), s+=A279329(n-c, c+1))); (s)); }; \\ Antti Karttunen, Aug 30 2017
(PARI) apply( A279329(n, m=1)={if(n, sum(c=m, sqrtnint(n, 3), A279329(n-c^3, c+1)), 1)}, [0..100]) \\ M. F. Hasler, Jan 05 2020
(PARI) V279329=Vecsmall(prod(k=1, sqrtnint(#l=1+O(x^N=39800), 3), l+x^k^3)-1); A279329(n)=V279329[n+!n] \\ Needs stack of N*201 byte (allocatemem) to compute the series, only (N+1)*8 byte to store the vector. - M. F. Hasler, Jan 05 2020
CROSSREFS
Cf. A001476 (positions of zeros), A003997 (positions of nonzeros after a(0)).
Cf. A030272 (a(n^3)).
Sequence in context: A281814 A353566 A279484 * A374117 A359430 A374121
KEYWORD
nonn,look
AUTHOR
Vaclav Kotesovec, Dec 10 2016
STATUS
approved