login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259792
Number of partitions of n^3 into cubes.
26
1, 1, 2, 5, 17, 62, 258, 1050, 4365, 18012, 73945, 301073, 1214876, 4852899, 19187598, 75070201, 290659230, 1113785613, 4224773811, 15866483556, 59011553910, 217410395916, 793635925091, 2871246090593, 10297627606547, 36620869115355, 129166280330900
OFFSET
0,3
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..173 (terms 0..120 from Alois P. Heinz)
G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373.
FORMULA
a(n) = [x^(n^3)] Product_{j>=1} 1/(1-x^(j^3)). - Alois P. Heinz, Jul 10 2015
a(n) = A003108(n^3). - Vaclav Kotesovec, Aug 19 2015
a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * n^(3/4) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(15/4)) [after Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1) +`if`(i^3>n, 0, b(n-i^3, i)))
end:
a:= n-> b(n^3, n):
seq(a(n), n=0..26); # Alois P. Heinz, Jul 10 2015
MATHEMATICA
$RecursionLimit = 1000; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[ i^3>n, 0, b[n-i^3, i]]]; a[n_] := b[n^3, n]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
CROSSREFS
A row of the array in A259799.
Cf. A279329.
Sequence in context: A112832 A148415 A148416 * A003456 A109084 A217596
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 06 2015
EXTENSIONS
More term from Alois P. Heinz, Jul 10 2015
STATUS
approved