The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259792 Number of partitions of n^3 into cubes. 25
 1, 1, 2, 5, 17, 62, 258, 1050, 4365, 18012, 73945, 301073, 1214876, 4852899, 19187598, 75070201, 290659230, 1113785613, 4224773811, 15866483556, 59011553910, 217410395916, 793635925091, 2871246090593, 10297627606547, 36620869115355, 129166280330900 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..173 (terms 0..120 from Alois P. Heinz) H. L. Fisher, Letter to N. J. A. Sloane, Mar 16 1989 G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373. FORMULA a(n) = [x^(n^3)] Product_{j>=1} 1/(1-x^(j^3)). - Alois P. Heinz, Jul 10 2015 a(n) = A003108(n^3). - Vaclav Kotesovec, Aug 19 2015 a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * n^(3/4) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(15/4)) [after Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016 MAPLE b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,       b(n, i-1) +`if`(i^3>n, 0, b(n-i^3, i)))     end: a:= n-> b(n^3, n): seq(a(n), n=0..26);  # Alois P. Heinz, Jul 10 2015 MATHEMATICA \$RecursionLimit = 1000; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[ i^3>n, 0, b[n-i^3, i]]]; a[n_] := b[n^3, n]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *) CROSSREFS A row of the array in A259799. Cf. A279329. Cf. A001156, A003108, A046042. Cf. A037444, A259793. Sequence in context: A112832 A148415 A148416 * A003456 A109084 A217596 Adjacent sequences:  A259789 A259790 A259791 * A259793 A259794 A259795 KEYWORD nonn AUTHOR N. J. A. Sloane, Jul 06 2015 EXTENSIONS More term from Alois P. Heinz, Jul 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 15:52 EST 2020. Contains 332078 sequences. (Running on oeis4.)