login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259799
Array read by antidiagonals upwards: T(n,k) = number of partitions of k^n into n-th powers (n>=1, k>=0).
11
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 5, 8, 7, 1, 1, 2, 7, 17, 19, 11, 1, 1, 2, 9, 36, 62, 43, 15, 1, 1, 2, 13, 88, 253, 258, 98, 22, 1, 1, 2, 19, 218, 1104, 1886, 1050, 220, 30, 1, 1, 2, 27, 550, 5082, 15772, 14800, 4365, 504, 42, 1, 1, 2, 40, 1413, 24119, 140549, 241582, 118238, 18012, 1116, 56
OFFSET
1,6
EXAMPLE
The array begins:
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, ...
1, 1, 2, 4, 8, 19, 43, 98, 220, 504, ...
1, 1, 2, 5, 17, 62, 258, 1050, 4365, 18012, ...
1, 1, 2, 7, 36, 253, 1886, 14800, 118238, ...
1, 1, 2, 9, 88, 1104, 15772, 241582, ...
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
`if`(i=2, 1+iquo(n, i^k), b(n, i-1, k)+
`if`(i^k>n, 0, b(n-i^k, i, k))))
end:
T:= (n, k)-> b(k^n, k, n):
seq(seq(T(d-k, k), k=0..d-1), d=1..12); # Alois P. Heinz, Jul 10 2015
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n==0 || i==1, 1, If[i==2, 1+Quotient[n, i^k], b[n, i-1, k] + If[i^k>n, 0, b[n-i^k, i, k]]]]; T[n_, k_] := b[k^n, k, n]; Table[ Table[ T[d-k, k], {k, 0, d-1}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
CROSSREFS
T(n,n) gives A331402.
Sequence in context: A047913 A152977 A360334 * A208447 A320750 A117935
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 06 2015
EXTENSIONS
More terms from Alois P. Heinz, Jul 10 2015
STATUS
approved