login
A047913
Triangle of numbers a(n,k) = number of partitions of k such that k = n + n_1 + n_2 + ... + n_t where n_1 <= 2n and n_{i+1} <= 2n_i for all i.
6
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 9, 1, 1, 2, 4, 7, 12, 16, 1, 1, 2, 4, 7, 13, 22, 28, 1, 1, 2, 4, 7, 13, 24, 39, 50, 1, 1, 2, 4, 7, 13, 24, 42, 70, 89, 1, 1, 2, 4, 7, 13, 24, 43, 76, 126, 159, 1, 1, 2, 4, 7, 13, 24, 43, 78, 137, 225, 285
OFFSET
1,6
COMMENTS
Triangle is read in this order: a(1,1), a(2,2), a(1,2), a(3,3), a(2,3), a(1,3), a(4,4), ...
Rows are the columns in the table at the end of the Minc reference, read bottom to top. - Joerg Arndt, Jan 15 2024
FORMULA
a(n, n)=1, a(n, k) = Sum_{i=1..2n} a(i, k-n).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 2;
1, 1, 2, 3;
1, 1, 2, 4, 5;
1, 1, 2, 4, 7, 9;
1, 1, 2, 4, 7, 12, 16;
1, 1, 2, 4, 7, 13, 22, 28;
1, 1, 2, 4, 7, 13, 24, 39, 50;
1, 1, 2, 4, 7, 13, 24, 42, 70, 89;
1, 1, 2, 4, 7, 13, 24, 43, 76, 126, 159;
1, 1, 2, 4, 7, 13, 24, 43, 78, 137, 225, 285;
...
Rows approach A002843. - Joerg Arndt, Jan 15 2024
MATHEMATICA
a[n_, n_] = 1; a[n_?Positive, k_?Positive] := a[n, k] = Sum[a[i, k-n], {i, 1, 2*n}]; a[n_, k_] = 0; Table[a[n, k], {k, 1, 12}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Oct 21 2013 *)
CROSSREFS
Rows give A002572, A002573, A002574, ..., columns approach A002843.
Cf. A049286 (triangle with reversed rows).
Sequence in context: A360492 A360491 A360333 * A152977 A360334 A259799
KEYWORD
tabl,nonn,easy,nice
STATUS
approved