The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049286 Triangle of partitions v(d,c) defined in A002572. 2
 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 4, 2, 1, 1, 9, 7, 4, 2, 1, 1, 16, 12, 7, 4, 2, 1, 1, 28, 22, 13, 7, 4, 2, 1, 1, 50, 39, 24, 13, 7, 4, 2, 1, 1, 89, 70, 42, 24, 13, 7, 4, 2, 1, 1, 159, 126, 76, 43, 24, 13, 7, 4, 2, 1, 1, 285, 225, 137, 78, 43, 24, 13, 7, 4, 2, 1, 1, 510 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 REFERENCES Minc, H.; A problem in partitions: Enumeration of elements of a given degree in the free commutative entropic cyclic groupoid. Proc. Edinburgh Math. Soc. (2) 11 1958/1959 223-224. LINKS Shimon Even & Abraham Lempel, Generation and enumeration of all solutions of the characteristic sum condition, Information and Control 21 (1972), 476-482. EXAMPLE 1; 1,1; 2,1,1; 3,2,1,1; 5,4,2,1,1; 9,7,4,2,1,1; ... MAPLE v := proc(c, d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i, d-c), i=1..2*c); fi; end; MATHEMATICA v[c_, d_] := v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d - c], {i, 1, 2*c}]]]; Table[v[d, c], {c, 1, 13}, {d, 1, c}] // Flatten (* Jean-François Alcover, Dec 10 2012, after Maple *) CROSSREFS Cf. A002572, A002573, A002574, A049284, A049285. See A047913 for another version. Sequence in context: A175331 A098805 A168396 * A308477 A079216 A181654 Adjacent sequences:  A049283 A049284 A049285 * A049287 A049288 A049289 KEYWORD nonn,tabl,nice,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 02:39 EDT 2021. Contains 346302 sequences. (Running on oeis4.)