OFFSET
1,2
COMMENTS
REFERENCES
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
LINKS
Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
N. J. A. Sloane, Notes on A002618, A002619, etc.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
EXAMPLE
1; 2,2; 6,0,6; 8,8,0,24; 20,0,0,0,120; 12,36,48,0,0,720; ...
MATHEMATICA
a[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, May 04 2012 *)
PROG
(Haskell)
import Data.List (zipWith4)
a047916 n k = a047916_tabl !! (n-1) !! (k-1)
a047916_row n = a047916_tabl !! (n-1)
a047916_tabl = zipWith4 (zipWith4 (\x u v w -> x * v ^ u * w))
a054523_tabl a002260_tabl a010766_tabl a166350_tabl
-- Reinhard Zumkeller, Jan 20 2014
(PARI) a(n, k)=if(n%k, 0, eulerphi(n/k)*(n/k)^k*k!) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
A064649 gives the row sums.
KEYWORD
AUTHOR
STATUS
approved