login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274440
Decimal expansion of Q(2), value of one of five integrals related to Quantum Field Theory (see the paper by David Broadhurst).
4
2, 2, 6, 0, 3, 9, 9, 2, 4, 8, 1, 2, 0, 4, 6, 3, 6, 8, 9, 9, 6, 0, 9, 2, 9, 0, 6, 6, 2, 4, 0, 8, 9, 5, 0, 3, 1, 9, 3, 0, 7, 6, 1, 5, 0, 0, 1, 6, 3, 3, 2, 1, 3, 8, 8, 8, 9, 4, 8, 8, 9, 0, 4, 2, 3, 2, 9, 0, 8, 5, 7, 4, 8, 5, 6, 8, 7, 2, 5, 7, 0, 5, 8, 8, 7, 5, 0, 4, 7, 0, 4, 6, 7, 8, 6, 2, 0, 3, 7, 4, 5, 0, 7, 5
OFFSET
1,1
FORMULA
Q(n) = Integral_{x>0} arccosh((x+2)/2)^2 log((x+1)/x)/(x+n) dx.
Computation is done using the analytical form given by David Broadhurst:
Q(2) = -Cl2(Pi/3)^2 + 53/16 zeta(4) + 5/2 U, where Cl_2 is the Clausen integral and U is A255685.
EXAMPLE
2.260399248120463689960929066240895031930761500163321388894889042329...
MATHEMATICA
Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]);
U = A255685 = Pi^4/180 + (Pi^2/12)*Log[2]^2 - (1/12)*Log[2]^4 - 2*PolyLog[4, 1/2];
Q[2] = -Cl2[Pi/3]^2 + 53/16 Zeta[4] + 5/2 U;
RealDigits[N[Q[2], 104] // Chop][[1]]
PROG
(PARI)
Q(n) = intnum(x=0, oo, acosh((x+2)/2)^2 * log((x+1)/x)/(x+n));
Q(2) \\ Gheorghe Coserea, Sep 30 2018
(PARI)
clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
u31=Pi^4/180 + (Pi^2/12)*log(2)^2 - (1/12)*log(2)^4 - 2*polylog(4, 1/2);
-clausen(2, Pi/3)^2 + 53/16*zeta(4) + 5/2*u31 \\ Gheorghe Coserea, Sep 30 2018
CROSSREFS
Cf. A274438 (Q(0)), A274439 (Q(1)), A274441 (Q(3)), A274442 (Q(4)).
Sequence in context: A091085 A011144 A127649 * A378208 A199220 A047916
KEYWORD
nonn,cons
AUTHOR
STATUS
approved