OFFSET
1,1
LINKS
David J. Broadhurst, Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity, arXiv:hep-th/9803091, 1998, p. 12.
Eric Weisstein's MathWorld, Clausen's Integral
FORMULA
EXAMPLE
2.03436897131720444715410048232706998197695047365128645708443723938...
MATHEMATICA
digits = 101;
Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]);
U = A255685 = Pi^4/180 + (Pi^2/12)*Log[2]^2 - (1/12)*Log[2]^4 - 2*PolyLog[4, 1/2];
v[k_] := ((-1)^k*((24*(k - 1)*(3*k - 4))/(3*k - 2)^3 + (8*(3*k*(3*k - 5) + 4))/(27*(k - 1)^3) + PolyGamma[2, (3*k)/2 - 1] - PolyGamma[2, (3*(k - 1))/2]))/(48*(k - 1)*(3*k - 4)*(3*k - 2));
V = A274400 = 3 Zeta[3]/8 - 1/2 + NSum[v[k], {k, 2, Infinity}, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"];
Q[3] = -50/9 Cl2[Pi/3]^2 + 596/81 Zeta[4] - 16/9 U + 32/3 V;
RealDigits[N[Q[3], digits] // Chop][[1]]
PROG
(PARI)
Q(n) = intnum(x=0, oo, acosh((x+2)/2)^2 * log((x+1)/x)/(x+n));
Q(3) \\ Gheorghe Coserea, Sep 30 2018
(PARI)
clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
u31=Pi^4/180 + (Pi^2/12)*log(2)^2 - (1/12)*log(2)^4 - 2*polylog(4, 1/2);
v31=3*zeta(3)/8 - 1/2 + sumalt(k=2, (-1)^k*((24*(k-1)*(3*k-4))/(3*k-2)^3 + (8*(3*k*(3*k-5)+4))/(27*(k-1)^3) + polygamma(2, (3*k)/2-1) - polygamma(2, (3*(k-1))/2))/(48*(k-1)*(3*k-4)*(3*k-2)));
-50/9*clausen(2, Pi/3)^2 + 596/81*zeta(4) - 16/9*u31 + 32/3*v31 \\ Gheorghe Coserea, Sep 30 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Jun 23 2016
STATUS
approved