login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255685
Decimal expansion of the alternating double sum U(3,1) = Sum_{i>=2} (Sum_{j=1..i-1} (-1)^(i+j)/(i^3*j)) (negated).
7
1, 1, 7, 8, 7, 5, 9, 9, 9, 6, 5, 0, 5, 0, 9, 3, 2, 6, 8, 4, 1, 0, 1, 3, 9, 5, 0, 8, 3, 4, 1, 3, 7, 6, 1, 8, 7, 1, 5, 2, 1, 7, 5, 1, 3, 1, 7, 5, 9, 7, 5, 0, 6, 3, 3, 2, 2, 2, 4, 5, 2, 4, 1, 8, 5, 4, 2, 7, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 4, 1, 3, 2, 4, 3, 7, 0, 1, 7, 4, 6, 4, 8, 2, 7, 1, 2, 5, 9, 5, 1, 3, 2, 4
OFFSET
0,3
LINKS
David Broadhurst, Feynman’s sunshine numbers, arXiv:1004.4238 [physics.pop-ph], 2010, p. 16.
FORMULA
Pi^4/180 + (Pi^2/12)*log(2)^2 - (1/12)*log(2)^4 - 2*Li_4(1/2).
EXAMPLE
-0.117875999650509326841013950834137618715217513175975...
MATHEMATICA
U[3, 1] = Pi^4/180 + (Pi^2/12)*Log[2]^2 - (1/12)*Log[2]^4 - 2*PolyLog[4, 1/2]; RealDigits[U[3, 1], 10, 103] // First
PROG
(PARI)
Pi^4/180 + (Pi^2/12)*log(2)^2 - (1/12)*log(2)^4 - 2*polylog(4, 1/2) \\ Gheorghe Coserea, Sep 30 2018
CROSSREFS
Cf. A099218.
Sequence in context: A100264 A373026 A272877 * A154192 A011283 A179659
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved