login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255685 Decimal expansion of the alternating double sum U(3,1) = Sum_{i>=2} (Sum_{j=1..i-1} (-1)^(i+j)/(i^3*j)) (negated). 7
1, 1, 7, 8, 7, 5, 9, 9, 9, 6, 5, 0, 5, 0, 9, 3, 2, 6, 8, 4, 1, 0, 1, 3, 9, 5, 0, 8, 3, 4, 1, 3, 7, 6, 1, 8, 7, 1, 5, 2, 1, 7, 5, 1, 3, 1, 7, 5, 9, 7, 5, 0, 6, 3, 3, 2, 2, 2, 4, 5, 2, 4, 1, 8, 5, 4, 2, 7, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 4, 1, 3, 2, 4, 3, 7, 0, 1, 7, 4, 6, 4, 8, 2, 7, 1, 2, 5, 9, 5, 1, 3, 2, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..102.

David Broadhurst, Feynman’s sunshine numbers, arXiv:1004.4238 [physics.pop-ph], 2010, p. 16.

Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 6.

FORMULA

Pi^4/180 + (Pi^2/12)*log(2)^2  - (1/12)*log(2)^4 - 2*Li_4(1/2).

EXAMPLE

-0.117875999650509326841013950834137618715217513175975...

MATHEMATICA

U[3, 1] = Pi^4/180 + (Pi^2/12)*Log[2]^2  - (1/12)*Log[2]^4 - 2*PolyLog[4, 1/2]; RealDigits[U[3, 1], 10, 103] // First

PROG

(PARI)

Pi^4/180 + (Pi^2/12)*log(2)^2  - (1/12)*log(2)^4 - 2*polylog(4, 1/2) \\ Gheorghe Coserea, Sep 30 2018

CROSSREFS

Cf. A099218.

Sequence in context: A021931 A100264 A272877 * A154192 A011283 A179659

Adjacent sequences:  A255682 A255683 A255684 * A255686 A255687 A255688

KEYWORD

nonn,cons,easy

AUTHOR

Jean-François Alcover, Mar 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 15:24 EST 2021. Contains 349581 sequences. (Running on oeis4.)