OFFSET
1,1
COMMENTS
a(n) is divisible by 3, and a majority of numbers a(n)/3 are primes: 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 41, 47, 53, 59, 67, 73, 79, 83, 89, 97, 101, 103, 107, 113, 127, 131, 137, 151, 167, 179, 181, 191, 193, 211, 223, 233, ... The nonprimes a(n)/3 are 1, 4, 6, 9, 15, 21, 45, 51, 63, 75, 121, 153, ...
EXAMPLE
MATHEMATICA
f[x_] := Plus @@ Select[Divisors[Fibonacci[x]], OddQ[#] &]; g[x_] := Plus @@ Select[Divisors[Fibonacci[x]], EvenQ[#]&]; Do[If[CarmichaelLambda[f[n]]== CarmichaelLambda[g[n]], Print[n]], {n, 1, 500}]
PROG
(PARI) a002322(n) = lcm(znstar(n)[2]);
isok(n) = my(fn = fibonacci(n)); my(sod = sumdiv(fn, d, d*(d%2))); my(sed = sigma(fn) - sod); sod && sed && (a002322(sod) == a002322(sed)); \\ Michel Marcus, Mar 02 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 02 2015
STATUS
approved