login
A274400
Decimal expansion of 'V', the value of a 4-dimensional iterated integral studied by David Broadhurst in connection with Quantum Field Theory (negated).
3
0, 3, 9, 0, 1, 2, 7, 2, 6, 3, 6, 0, 1, 6, 7, 1, 6, 6, 0, 1, 7, 5, 6, 6, 9, 4, 1, 3, 5, 4, 5, 0, 0, 4, 6, 1, 7, 5, 7, 4, 7, 5, 8, 5, 7, 1, 3, 8, 6, 1, 3, 0, 9, 9, 0, 1, 4, 9, 3, 8, 9, 6, 7, 3, 9, 5, 4, 0, 3, 8, 9, 2, 7, 5, 0, 1, 8, 5, 6, 5, 4, 8, 7, 1, 8, 1, 2, 1, 8, 8, 1, 2, 8, 2, 8, 4, 2, 6, 1, 2, 8, 8
OFFSET
0,2
REFERENCES
Jonathan Borwein and Peter Borwein, Experimental and Computational Mathematics: Selected Writings, Perfectly Scientific Press, 2010, p. 106.
FORMULA
V = Sum_{j>k>0} (-1)^j cos(2Pi k/3)/(j^3 k).
Equals 3 zeta(3)/8-1/2+Sum_{k>=2} ((-1)^k*((24*(k - 1)*(3*k - 4))/(3*k - 2)^3 + (8*(3*k*(3*k - 5) + 4))/(27*(k - 1)^3) + PolyGamma(2, (3*k)/2 - 1) - PolyGamma(2, (3*(k - 1))/2)))/(48*(k - 1)*(3*k - 4)*(3*k - 2)).
EXAMPLE
-0.0390127263601671660175669413545004617574758571386130990149389673954...
MATHEMATICA
digits = 101;
v[k_] := ((-1)^k*((24*(k - 1)*(3*k - 4))/(3*k - 2)^3 + (8*(3*k*(3*k - 5) + 4))/(27*(k - 1)^3) + PolyGamma[2, (3*k)/2 - 1] - PolyGamma[2, (3*(k - 1))/2]))/(48*(k - 1)*(3*k - 4)*(3*k - 2));
V = 3 Zeta[3]/8 - 1/2 + NSum[v[k], {k, 2, Infinity}, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]; Join[{0},
RealDigits[V, 10, digits][[1]]]
CROSSREFS
Cf. A255685 ('U' in Borwein & Borwein).
Sequence in context: A088110 A122759 A247042 * A200495 A329937 A272535
KEYWORD
nonn,cons
AUTHOR
STATUS
approved