login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274398
Numerators of 1/2 + sum(chi(p)^(4*n / (p-1))/p) where the sum is over primes p of the form 4k+1 such that p-1 divides 4*n and the numbers chi(p) are given by A002172.
1
1, 13, -83, 649, -59, 2089, -7379, 8829, -410479, 84273, -4091, 2032897, -867947, 951417, -47224023, 2228469, -262139, 19669687769, -1048571, 1461748549, -1500199283, 746586657, -16777211, 747004180629, -6777994779, 7113541809, -13667368865299, 29908738140693
OFFSET
1,2
LINKS
FORMULA
The n-th Hurwitz number is A002306(n)/A047817(n) = a(n)/A047817(n) + A002770(n).
a(n) = A002306(n) - A002770(n) * A047817(n) for n > 1.
EXAMPLE
H_1 = 1/10 = 1/2 - 2/5 = 1/10, so a(1) = 1.
H_2 = 3/10 = 1/2 + 2^2/5 - 1 = 13/10 - 1, so a(2) = 13.
H_3 = 567/130 = 1/2 - 2^3/5 + 6/13 + 5 = -83/130 + 5, so a(3) = -83.
H_4 = 43659/170 = 1/2 + 2^4/5 + 2/17 + 253 = 649/170 + 253, so a(4) = 649.
MATHEMATICA
nmax = 28; H[n_] := (n*(4*n - 2)!/(2^(4*n - 2)))*SeriesCoefficient[ WeierstrassP[z, {4, 0}], {z, 0, 4*n - 2}]; pp = Select[Prime[Range[2 nmax]], Mod[#, 4] == 1 &]; Scan[(chi[#] = -Sum[JacobiSymbol[x^3 - x, #], {x, 0, # - 1}])&, pp]; a[n_] := 1/2 + Sum[If[Divisible[4 n, p - 1], chi[p]^(4*n/(p - 1))/p, 0], {p, pp}] // Numerator; Array[a, nmax] (* Jean-François Alcover, Oct 22 2016 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 26 2016
STATUS
approved