login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274395
E.g.f. A(x) satisfies: A( A( x^5*exp(-5*x) )^(1/5) ) = x.
4
1, 2, 9, 64, 625, 7632, 115633, 2060864, 42272577, 981100000, 25420901209, 727392785472, 22781551770289, 775174385740496, 28475611427390625, 1123174379270470528, 47345176946662808833, 2124056646149570472384, 101049649535116764217513, 5081280208216339430000000, 269289663191356712678537841, 15001629187601225176466619952, 876397229390129697388339920049
OFFSET
1,2
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n) * x^n / n! satisfies:
(1) A( A( x^5*exp(5*x) )^(1/5) ) = -LambertW(-x*exp(x)).
(2) A(x) = Series_Reversion( A( x^5*exp(-5*x) )^(1/5) ).
(3) A( A(x)^5 * exp(-5*A(x)) ) = x^5.
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7632*x^6/6! + 115633*x^7/7! + 2060864*x^8/8! + 42272577*x^9/9! + 981100000*x^10/10! + 25420901209*x^11/11! + 727392785472*x^12/12! + 22781551770289*x^13/13! + 775174385740496*x^14/14! + 28475611427390625*x^15/15! +...
such that A( A( x^5*exp(-5*x) )^(1/5) ) = x.
RELATED SERIES.
The series reversion of the e.g.f. A(x) equals the series defined by:
A( x^5*exp(-5*x) )^(1/5) = x - 2*x^2/2! + 3*x^3/3! - 4*x^4/4! + 5*x^5/5! + 138*x^6/6! - 6041*x^7/7! + 145144*x^8/8! - 2612727*x^9/9! + 39191030*x^10/10! - 508540021*x^11/11! + 5048676852*x^12/12! + 13708341517*x^13/13! - 3528271498766*x^14/14! + 168238690139535*x^15/15! +...
Compare the above series reversion to the following series:
A(x)^5 * exp(-5*A(x)) = x^5 - 2*x^10/2! + 3*x^15/3! - 4*x^20/4! + 5*x^25/5! + 138*x^30/6! - 6041*x^35/7! + 145144*x^40/8! - 2612727*x^45/9! +...
where A( A(x)^5 * exp(-5*A(x)) ) = x^5.
Note the following series is also in powers of x^5:
A(-A(x)^5 * exp(-5*A(x)) ) = -x^5 + 4*x^10/2! - 24*x^15/3! + 224*x^20/4! - 2880*x^25/5! + 46944*x^30/6! - 926464*x^35/7! + 21582976*x^40/8! - 581587200*x^45/9! + 17791870400*x^50/10! - 608466076416*x^55/11! + 22988808466560*x^60/12! - 950707246757632*x^65/13! + 42712071655886752*x^70/14! - 2071447871355102720*x^75/15! + 107861157493089761024*x^80/16! +...
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = serreverse( subst(A, x, x^5*exp(-5*x +x*O(x^n)))^(1/5) ) ); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 21 2016
STATUS
approved