login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274393
E.g.f. A(x) satisfies: A( A( x^3*exp(-3*x) )^(1/3) ) = x.
4
1, 2, 9, 56, 545, 6696, 100009, 1756112, 35480673, 811332080, 20696592521, 583009540488, 17972297981521, 601961695890296, 21765379980020265, 844991974575946016, 35056808550027808961, 1547900555791042958688, 72474037424646843142153, 3586609339433026549298840, 187062738581835989450074161, 10255505482370456224398408872, 589611389520200188085133153449
OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..175 (terms 1..100 from Paul D. Hanna)
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n) * x^n / n! satisfies:
(1) A( A( x^3*exp(3*x) )^(1/3) ) = -LambertW(-x*exp(x)).
(2) A(x) = Series_Reversion( A( x^3*exp(-3*x) )^(1/3) ).
(3) A( A(x)^3 * exp(-3*A(x)) ) = x^3.
a(n) ~ c * n! * d^n / n^(3/2), where d = 2.67119188675..., c = 0.3883596303... . - Vaclav Kotesovec, Aug 12 2021
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 56*x^4/4! + 545*x^5/5! + 6696*x^6/6! + 100009*x^7/7! + 1756112*x^8/8! + 35480673*x^9/9! + 811332080*x^10/10! + 20696592521*x^11/11! + 583009540488*x^12/12! + 17972297981521*x^13/13! + 601961695890296*x^14/14! + 21765379980020265*x^15/15! +...
such that A( A( x^3*exp(-3*x) )^(1/3) ) = x.
RELATED SERIES.
The series reversion of the e.g.f. A(x) equals the series defined by:
A( x^3*exp(-3*x) )^(1/3) = x - 2*x^2/2! + 3*x^3/3! + 4*x^4/4! - 155*x^5/5! + 1914*x^6/6! - 15953*x^7/7! + 33592*x^8/8! + 2425257*x^9/9! - 71955530*x^10/10! + 1307665051*x^11/11! - 13707439692*x^12/12! - 125013414227*x^13/13! + 11742108426034*x^14/14! - 370418656051065*x^15/15! +...
Compare the above series reversion to the following series:
A(x)^3 * exp(-3*A(x)) = x^3 - 2*x^6/2! + 3*x^9/3! + 4*x^12/4! - 155*x^15/5! + 1914*x^18/6! - 15953*x^21/7! + 33592*x^24/8! +...
where A( A(x)^3 * exp(-3*A(x)) ) = x^3.
Note the following series is also in powers of x^3:
A(-A(x)^3 * exp(-3*A(x)) ) = -x^3 + 4*x^6/2! - 24*x^9/3! + 208*x^12/4! - 2400*x^15/5! + 36432*x^18/6! - 700672*x^21/7! + 16221088*x^24/8! - 434076480*x^27/9! + 13091390560*x^30/10! - 438602465664*x^33/11! + 16177344184080*x^36/12! - 652301794869088*x^39/13! + 28571154198355888*x^42/14! +...
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = serreverse( subst(A, x, x^3*exp(-3*x +x*O(x^n)))^(1/3) ) ); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 21 2016
STATUS
approved