login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274438
Decimal expansion of Q(0), value of one of five integrals related to Quantum Field Theory (see the paper by David Broadhurst).
3
4, 1, 2, 0, 4, 2, 5, 8, 5, 7, 6, 8, 5, 6, 3, 3, 0, 0, 9, 3, 3, 3, 1, 9, 3, 2, 0, 5, 8, 6, 5, 5, 1, 8, 3, 9, 6, 8, 9, 0, 2, 2, 8, 9, 8, 0, 5, 1, 0, 0, 9, 5, 3, 3, 7, 9, 9, 7, 4, 2, 6, 2, 6, 6, 7, 7, 5, 5, 4, 4, 1, 5, 8, 1, 0, 1, 0, 7, 0, 2, 6, 0, 8, 9, 2, 0, 1, 6, 3, 9, 2, 6, 8, 5, 9, 1, 6, 4, 5, 3, 9, 8, 2, 9
OFFSET
1,1
FORMULA
Q(n) = Integral_{0..inf} arccosh((x+2)/2)^2 log((x+1)/x)/(x+n) dx.
Computation is done using the analytical form given by David Broadhurst: Q(0) = 4 Cl_2(Pi/3)^2, where Cl_2 is the Clausen integral.
15 Q(0) + 144 Q(1) - 448 Q(2) + 126 Q(3) + 168 Q(4) = 0.
EXAMPLE
4.1204258576856330093331932058655183968902289805100953379974262667755...
MATHEMATICA
Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]);
Q[0] = 4 Cl2[Pi/3]^2 ;
RealDigits[N[Q[0], 104] // Chop][[1]]
PROG
(PARI)
Q(n) = intnum(x=0, oo, acosh((x+2)/2)^2 * log((x+1)/x)/(x+n));
Q(0) \\ Gheorghe Coserea, Oct 01 2018
(PARI)
clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
4*clausen(2, Pi/3)^2 \\ Gheorghe Coserea, Oct 01 2018
CROSSREFS
Cf. A274439 (Q(1)), A274440 (Q(2)), A274441 (Q(3)), A274442 (Q(4)).
Sequence in context: A343635 A287647 A331749 * A365387 A087565 A079163
KEYWORD
nonn,cons
AUTHOR
STATUS
approved