login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Q(2), value of one of five integrals related to Quantum Field Theory (see the paper by David Broadhurst).
4

%I #11 Oct 01 2018 02:39:56

%S 2,2,6,0,3,9,9,2,4,8,1,2,0,4,6,3,6,8,9,9,6,0,9,2,9,0,6,6,2,4,0,8,9,5,

%T 0,3,1,9,3,0,7,6,1,5,0,0,1,6,3,3,2,1,3,8,8,8,9,4,8,8,9,0,4,2,3,2,9,0,

%U 8,5,7,4,8,5,6,8,7,2,5,7,0,5,8,8,7,5,0,4,7,0,4,6,7,8,6,2,0,3,7,4,5,0,7,5

%N Decimal expansion of Q(2), value of one of five integrals related to Quantum Field Theory (see the paper by David Broadhurst).

%H David J. Broadhurst, <a href="http://arxiv.org/abs/hep-th/9803091">Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity</a>, arXiv:hep-th/9803091, 1998, p. 12.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/ClausensIntegral.html">Clausen's Integral</a>

%F Q(n) = Integral_{x>0} arccosh((x+2)/2)^2 log((x+1)/x)/(x+n) dx.

%F Computation is done using the analytical form given by David Broadhurst:

%F Q(2) = -Cl2(Pi/3)^2 + 53/16 zeta(4) + 5/2 U, where Cl_2 is the Clausen integral and U is A255685.

%e 2.260399248120463689960929066240895031930761500163321388894889042329...

%t Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]);

%t U = A255685 = Pi^4/180 + (Pi^2/12)*Log[2]^2 - (1/12)*Log[2]^4 - 2*PolyLog[4, 1/2];

%t Q[2] = -Cl2[Pi/3]^2 + 53/16 Zeta[4] + 5/2 U;

%t RealDigits[N[Q[2], 104] // Chop][[1]]

%o (PARI)

%o Q(n) = intnum(x=0, oo, acosh((x+2)/2)^2 * log((x+1)/x)/(x+n));

%o Q(2) \\ _Gheorghe Coserea_, Sep 30 2018

%o (PARI)

%o clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));

%o u31=Pi^4/180 + (Pi^2/12)*log(2)^2 - (1/12)*log(2)^4 - 2*polylog(4, 1/2);

%o -clausen(2, Pi/3)^2 + 53/16*zeta(4) + 5/2*u31 \\ _Gheorghe Coserea_, Sep 30 2018

%Y Cf. A274438 (Q(0)), A274439 (Q(1)), A274441 (Q(3)), A274442 (Q(4)).

%K nonn,cons

%O 1,1

%A _Jean-François Alcover_, Jun 23 2016