|
|
A091085
|
|
a(n) = mod(A078008(n),10).
|
|
0
|
|
|
1, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6, 0, 2, 2, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A078008(0), followed by A078008(1), A078008(2), A078008(3), A078008(4) repeating.
|
|
LINKS
|
Table of n, a(n) for n=0..104.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
|
|
FORMULA
|
G.f.: (1+2x^2+2x^3+5x^4)/(1-x^4).
E.g.f.: 2cos(x)-sin(x)+3exp(-x)/2+5exp(x)/2-5.
a(n) = 2cos(Pi*n/2)-sin(Pi*n/2)+3(-1)^n/2+5/2-5*0^n.
a(n) = -(1/12)*{7*(n mod 4)-5*[(n+1) mod 4]+[(n+2) mod 4]-23*[(n+3) mod 4]}-5*[C(2*n,n) mod 2], with n>=0. - Paolo P. Lava, Jul 16 2008
|
|
MATHEMATICA
|
LinearRecurrence[{0, 0, 0, 1}, {1, 0, 2, 2, 6}, 105] (* Georg Fischer, May 15 2019 *)
|
|
CROSSREFS
|
Cf. A078008.
Sequence in context: A158061 A270546 A163119 * A011144 A127649 A274440
Adjacent sequences: A091082 A091083 A091084 * A091086 A091087 A091088
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Dec 18 2003
|
|
EXTENSIONS
|
Terms a(75) ff. corrected by Georg Fischer, May 15 2019
|
|
STATUS
|
approved
|
|
|
|