The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270546 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/(2k-1). 2
 2, 2, 5, 325, 200533, 65627675599, 22975481891957121466348, 1958997403653886589078102754522745217186637162, 141280756113351994103874857935521871912536028357392961997286697261498102983722388787617517574 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1).  Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k).  Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x. See A269993 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 1..12 Eric Weisstein's World of Mathematics, Egyptian Fraction EXAMPLE sqrt(1/2) = 1/(1*2) + 1/(3*2) + 1/(5*5) + 1/(7*325) + ... MATHEMATICA r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt(1/2); Table[n[x, k], {k, 1, z}] PROG (PARI) r(k) = 1/(2*k-1); f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); ); a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Apr 03 2016 CROSSREFS Cf. A269993, A005408, A010503. Sequence in context: A036739 A158311 A158061 * A163119 A091085 A011144 Adjacent sequences:  A270543 A270544 A270545 * A270547 A270548 A270549 KEYWORD nonn,frac,easy AUTHOR Clark Kimberling, Apr 02 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 19:12 EST 2020. Contains 331175 sequences. (Running on oeis4.)