

A270545


Number of equilateral triangle units forming perimeter of equilateral triangle.


2



1, 4, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285, 291, 297, 303, 309, 315
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This is the triangular equivalent of A008574 (square units forming perimeter of a square).
The height of each triangle is n+1 units.


LINKS

Colin Barker, Table of n, a(n) for n = 0..1000
Michel Marcus, Illustration of initial terms
Index entries for linear recurrences with constant coefficients, signature (2,1).


FORMULA

a(0)=1 and a(1)=4; thereafter a(n) = (n+1)^2(n2)^2 = 6*n3.
a(n) = 2*a(n1)a(n2) for n>3. G.f.: (1+x)*(1+x+x^2) / (1x)^2.  Colin Barker, Mar 20 2016
a(n) = A016945(n1), n>1.


MATHEMATICA

CoefficientList[Series[(1 + x) (1 + x + x^2)/(1  x)^2, {x, 0, 53}], x] (* Michael De Vlieger, Mar 21 2016 *)


PROG

(PARI) a(n)=if(n<2, 3*n+1, 6*n3) \\ Charles R Greathouse IV, Mar 19 2016
(PARI) Vec((1+x)*(1+x+x^2)/(1x)^2 + O(x^50)) \\ Colin Barker, Mar 20 2016


CROSSREFS

Cf. A016945, A008574.
Sequence in context: A313295 A313296 A313297 * A358243 A099055 A162801
Adjacent sequences: A270542 A270543 A270544 * A270546 A270547 A270548


KEYWORD

nonn,easy


AUTHOR

Peter M. Chema, Mar 18 2016


STATUS

approved



