|
|
A091086
|
|
a(n) = A000975(n) mod 10.
|
|
0
|
|
|
0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A000975(0), A000975(1), A000975(2), A000975(3) repeating.
|
|
LINKS
|
Table of n, a(n) for n=0..104.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
|
|
FORMULA
|
G.f.: x*(1 + 2*x + 5*x^2)/(1 - x^4).
E.g.f.: 2*exp(x) - exp(-x) - cos(x) - 2*sin(x).
a(n) = 2 - (-1)^n - cos(Pi*n/2) - 2*sin(Pi*n/2).
a(n) = (1/12)*(19*(n mod 4) - 5*((n+1) mod 4) + ((n+2) mod 4) + ((n+3) mod 4)). - Paolo P. Lava, Jul 16 2008
a(n+4) = a(n). - G. C. Greubel, Sep 26 2017
2*a(n) = (n mod 2) + (n mod 4)^2. - Bruno Berselli, Oct 18 2018
|
|
MATHEMATICA
|
CoefficientList[Series[x (1 + 2 x + 5 x^2)/(1 - x^4), {x, 0, 50}], x] (* G. C. Greubel, Sep 26 2017 *)
PadRight[{}, 120, {0, 1, 2, 5}] (* Harvey P. Dale, Apr 30 2022 *)
|
|
PROG
|
(PARI) x='x+O('x^50); Vec(x*(1+2*x+5*x^2)/(1-x^4)) \\ G. C. Greubel, Sep 26 2017
|
|
CROSSREFS
|
Sequence in context: A159986 A065452 A004598 * A336686 A118349 A341268
Adjacent sequences: A091083 A091084 A091085 * A091087 A091088 A091089
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul Barry, Dec 18 2003
|
|
STATUS
|
approved
|
|
|
|