login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370541
Expansion of g.f. A(x) = Product_{n>=1} (1 + x^(n-1) + x^(2*n-1)) * (1 + x^n + x^(2*n-1)) * (1 - x^n - x^(2*n)).
1
2, 5, 0, -1, 0, -18, -15, -23, -36, -25, -52, -35, -42, -8, 13, 4, 96, 100, 208, 227, 388, 434, 499, 709, 670, 837, 883, 1057, 775, 1044, 819, 643, 535, -78, -345, -970, -1494, -3017, -3142, -5078, -6102, -7711, -9410, -11406, -13148, -15353, -17831, -18841, -22708, -22955, -26117
OFFSET
0,1
COMMENTS
Consider function R(p,q,r) = Product_{n>=1} (1 + p^(n-1)*(q^n + r)) * (1 + p^n*(q^(n-1) + r)) * (1 - p^n*(q^n + r)) which yields Ramanujan's theta function at r = 0: R(p,q,0) = f(p,q) = Sum_{n=-oo..+oo} p^(n*(n-1)/2) * q^(n*(n+1)/2). This sequence arises from R(p,q,r) when p = x, q = x, and r = 1: A(x) = R(x,x,1).
LINKS
EXAMPLE
G.f.: A(x) = 2 + 5*x - x^3 - 18*x^5 - 15*x^6 - 23*x^7 - 36*x^8 - 25*x^9 - 52*x^10 - 35*x^11 - 42*x^12 - 8*x^13 + 13*x^14 + 4*x^15 + 96*x^16 + 100*x^17 + ...
where A(x) equals the infinite product
A(x) = (2 + x)*(1 + 2*x)*(1 - x - x^2) * (1 + x + x^3)*(1 + x^2 + x^3)*(1 - x^2 - x^4) * (1 + x^2 + x^5)*(1 + x^3 + x^5)*(1 - x^3 - x^6) * (1 + x^3 + x^7)*(1 + x^4 + x^7)*(1 - x^4 - x^8) * (1 + x^4 + x^9)*(1 + x^5 + x^9)*(1 - x^5 - x^10) * (1 + x^5 + x^11)*(1 + x^6 + x^11)*(1 - x^6 - x^12) * (1 + x^6 + x^13)*(1 + x^7 + x^13)*(1 - x^7 - x^14) * ...
PROG
(PARI) {a(n) = my(A);
A = prod(m=1, n+1, (1 + x^(m-1) + x^(2*m-1)) * (1 + x^m + x^(2*m-1)) * (1 - x^m - x^(2*m)) +x*O(x^n));
polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Sequence in context: A100085 A159986 A065452 * A004598 A091086 A336686
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 22 2024
STATUS
approved