login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370539
Expansion of g.f. (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
1
1, 2, 8, 30, 118, 462, 1824, 7208, 28558, 113274, 449848, 1787968, 7111716, 28303548, 112700032, 448939744, 1788990454, 7131191202, 28433681832, 113398298336, 452345641820, 1804739556100, 7201621713568, 28741559322464, 114722405784428, 457971605148996, 1828422022584176
OFFSET
0,2
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
(2) A(x) = (1 + sqrt(1 - 4*x)) * (2-3*x + x*sqrt(1 - 4*x^2)) / (4*(1-4*x)).
a(n) ~ (10 + sqrt(3)) * 2^(2*n - 5). - Vaclav Kotesovec, Mar 14 2024
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 30*x^3 + 118*x^4 + 462*x^5 + 1824*x^6 + 7208*x^7 + 28558*x^8 + 113274*x^9 + 449848*x^10 + ...
RELATED SERIES.
The Catalan function C(x) = (1 - sqrt(1-4*x))/(2*x) begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ...
PROG
(PARI) {a(n) = my(x = 'x + O('x^(n+3)), C(x) = (1 - sqrt(1 - 4*x))/(2*x), A = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) );
polcoeff(A, n); }
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(x = 'x + O('x^(n+3)), A = (1 + sqrt(1 - 4*x)) * sqrt( (1 - 2*x)*(1 - sqrt(1 - 4*x^2))/2 ) / (2*x*(1-4*x)) );
polcoeff(A, n); }
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A266319 A155116 A133915 * A150759 A150760 A230588
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 12 2024
STATUS
approved