login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133915
a(n) = Sum_{i=0..n} C(2n-i,n+i)*2^i.
1
1, 2, 8, 30, 116, 452, 1772, 6974, 27524, 108852, 431168, 1709996, 6788536, 26971856, 107235668, 426594110, 1697855876, 6760326116, 26927208368, 107288242820, 427596003416, 1704598377176, 6796820059928, 27106584400460, 108123625907816, 431355955330952
OFFSET
0,2
COMMENTS
A transform of the Jacobsthal numbers A001045(n+1) under the mapping g(x)->(1/(c(x)sqrt(1-4x))g(xc(x)), c(x) the g.f. of A000108. Hankel transform is A001787(n+1).
LINKS
FORMULA
G.f.: (1-4*x+(1-x)*sqrt(1-4*x))/((x+2)*(1-4*x)^(3/2)).
a(n) = Sum_{k=0..n} C(2*n-k,n+k)*2^k.
a(n) = Sum_{k=0..n} C(n+k-1,k)*A001045(n-k+1).
2*n*a(n) +3*(4-5*n)*a(n-1) +6*(4*n-7)*a(n-2) + 8*(2*n-3)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
a(n) ~ 4^n/3. - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
CoefficientList[Series[(1-4*x+(1-x)*Sqrt[1-4*x])/((x+2)*(1-4*x)^(3/2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) a(n) = sum(i=0, n, binomial(2*n-i, n+i)*2^i); \\ Michel Marcus, Jul 08 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 28 2007
STATUS
approved