login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370540
Expansion of g.f. A(x) satisfying A(x)^2 = A(x^2) * (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
3
1, 1, 4, 12, 45, 157, 584, 2155, 8110, 30587, 116326, 443984, 1702272, 6546563, 25252094, 97638658, 378351696, 1468876958, 5712276601, 22247635905, 86765271643, 338795469496, 1324374411164, 5182303804184, 20297243177269, 79564763550396, 312137086267106, 1225421059470049
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n and C(x) = (1 - sqrt(1-4*x))/2 satisfy the following formulas.
(1) A(x)^2 = A(x^2) * F(x) where F(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) is the g.f. of A370539.
(2) G( x*A(x^2)*(1 - x*C(x^2)) ) = x, where G(x) = G( x^2 + 2*x^2*G(x) )^(1/2) is the g.f. of A356781.
a(n) ~ c * 4^n / sqrt(n), where c = 0.3550434768046000612979284344613941075803... - Vaclav Kotesovec, Mar 14 2024
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 12*x^3 + 45*x^4 + 157*x^5 + 584*x^6 + 2155*x^7 + 8110*x^8 + 30587*x^9 + 116326*x^10 + 443984*x^11 + ...
RELATED SERIES.
We may illustrate the formulas using the following related series expansions.
Recall that the Catalan function C(x) = (1 - sqrt(1-4*x))/2 begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ... + A000108(n)*x^n + ...
(1) By definition, A(x) = sqrt( A(x^2) * F(x) ) where
F(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) begins
F(x) = 1 + 2*x + 8*x^2 + 30*x^3 + 118*x^4 + 462*x^5 + 1824*x^6 + 7208*x^7 + 28558*x^8 + ... + A370539(n)*x^n + ...
(2) Also, G(x) = G( x^2 + 2*x^2*G(x) )^(1/2) begins
G(x) = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 14*x^7 + 32*x^8 + 74*x^9 + 172*x^10 + 408*x^11 + ... + A356781(n)*x^n + ...
such that the series reversion of G(x) equals
x*A(x^2)*(1 - x*C(x^2)) = x - x^2 + x^3 - 2*x^4 + 4*x^5 - 7*x^6 + 12*x^7 - 23*x^8 + 45*x^9 - 84*x^10 + 157*x^11 - 302*x^12 + 584*x^13 - 1121*x^14 + ...
PROG
(PARI) {a(n) = my(x = 'x + O('x^(n+4)), C(x) = (1 - sqrt(1 - 4*x))/(2*x), A = 1+x); for(i=1, n, A = sqrt( subst(A, 'x, x^2) * (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) ) ); polcoeff(A, n); }
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 12 2024
STATUS
approved