login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370543
Expansion of the Jacobi elliptic function cn(x,k) at k = 2 (even powers only).
4
1, -1, 17, -433, 20321, -1584289, 179967473, -28151779537, 5812048858049, -1529741412486721, 499975227342256337, -198676311845589783793, 94327947921149101192481, -52736138158762405338195169, 34291374178966525773142501553, -25660133983889999165774819970577
OFFSET
0,3
REFERENCES
H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.
LINKS
FORMULA
a(n) = (-1)^n * Sum_{k=0..n-1} A060627(n,k)*4^k for n >= 1, with a(0) = 1.
E.g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) C(x) = cn(x,k) at k = 2.
(2.a) C(x) = dn(2*x, 1/2).
(2.b) C(x) = (4 - 2*sn(x,1/2)^2 + sn(x,1/2)^4) / (4 - sn(x,1/2)^4).
(3) C(x) = 1 - Integral sqrt(1 - C(x)^2) * sqrt(4*C(x)^2 - 3) dx.
(4) C(x) = cos( Integral sqrt(4*C(x)^2 - 3) dx ).
(5.a) C(x) = sqrt(1 - sn(x,2)^2).
(5.b) C(x) = sqrt(3 + dn(x,2)^2) / 2.
O.g.f. 1/(1 + x/(1 + 4*2^2*x/(1 + 3^2*x/(1 + 4*4^2*x/(1 + 5^2*x/(1 + 4*6^2*x/(1 + 7^2*x/(1 + ...)))))))) = 1 - x + 17*x^2 - 433*x^3 + 20321*x^4 - 1584289*x^5 + ... (continued fraction, see Wall, 94.18, p. 374). - [See formula in A060627 by Peter Bala, Apr 25 2017].
a(n) ~ (-1)^n * 2^(4*n+2) * agm(1,2)^(2*n+1) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024
EXAMPLE
E.g.f.: C(x) = 1 - x^2/2! + 17*x^4/4! - 433*x^6/6! + 20321*x^8/8! - 1584289*x^10/10! + 179967473*x^12/12! - 28151779537*x^14/14! + ...
where C(x) = cn(x,2).
MAPLE
# a(n) = (2*n)! * [x^(2*n)] cn(x, 2).
cn_list := proc(k, len) local n; seq((2*n)!*coeff(series(JacobiCN(z, k), z,
2*len + 2), z, 2*n), n = 0..len) end:
cn_list(2, 15); # Peter Luschny, Mar 25 2024
MATHEMATICA
nmax = 20;
DeleteCases[CoefficientList[JacobiCN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax])! (* Jean-François Alcover, Mar 28 2024 *)
PROG
(PARI) /* C(x) = Jacobi Elliptic Function cn(x, k) at k = 2: */
{a(n) = my(k=2, C=1, S=x, D=1); for(i=1, n,
S = intformal(C*D + x*O(x^(2*n+1)));
C = 1 - intformal(S*D);
D = 1 - k^2*intformal(S*C)); (2*n)!*polcoeff(C, 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A028296 (cn(x,1)), A060627 (cn(x,k)).
Cf. A370542 (sn(x,2)), A370544 (dn(x,2)), A249282.
Sequence in context: A222648 A167474 A158063 * A301642 A035022 A375891
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 25 2024
STATUS
approved