login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of the Jacobi elliptic function cn(x,k) at k = 2 (even powers only).
4

%I #26 Mar 28 2024 13:41:14

%S 1,-1,17,-433,20321,-1584289,179967473,-28151779537,5812048858049,

%T -1529741412486721,499975227342256337,-198676311845589783793,

%U 94327947921149101192481,-52736138158762405338195169,34291374178966525773142501553,-25660133983889999165774819970577

%N Expansion of the Jacobi elliptic function cn(x,k) at k = 2 (even powers only).

%D H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

%H Paul D. Hanna, <a href="/A370543/b370543.txt">Table of n, a(n) for n = 0..301</a>

%F a(n) = (-1)^n * Sum_{k=0..n-1} A060627(n,k)*4^k for n >= 1, with a(0) = 1.

%F E.g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.

%F (1) C(x) = cn(x,k) at k = 2.

%F (2.a) C(x) = dn(2*x, 1/2).

%F (2.b) C(x) = (4 - 2*sn(x,1/2)^2 + sn(x,1/2)^4) / (4 - sn(x,1/2)^4).

%F (3) C(x) = 1 - Integral sqrt(1 - C(x)^2) * sqrt(4*C(x)^2 - 3) dx.

%F (4) C(x) = cos( Integral sqrt(4*C(x)^2 - 3) dx ).

%F (5.a) C(x) = sqrt(1 - sn(x,2)^2).

%F (5.b) C(x) = sqrt(3 + dn(x,2)^2) / 2.

%F O.g.f. 1/(1 + x/(1 + 4*2^2*x/(1 + 3^2*x/(1 + 4*4^2*x/(1 + 5^2*x/(1 + 4*6^2*x/(1 + 7^2*x/(1 + ...)))))))) = 1 - x + 17*x^2 - 433*x^3 + 20321*x^4 - 1584289*x^5 + ... (continued fraction, see Wall, 94.18, p. 374). - [See formula in A060627 by Peter Bala, Apr 25 2017].

%F a(n) ~ (-1)^n * 2^(4*n+2) * agm(1,2)^(2*n+1) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - _Vaclav Kotesovec_, Mar 28 2024

%e E.g.f.: C(x) = 1 - x^2/2! + 17*x^4/4! - 433*x^6/6! + 20321*x^8/8! - 1584289*x^10/10! + 179967473*x^12/12! - 28151779537*x^14/14! + ...

%e where C(x) = cn(x,2).

%p # a(n) = (2*n)! * [x^(2*n)] cn(x, 2).

%p cn_list := proc(k, len) local n; seq((2*n)!*coeff(series(JacobiCN(z, k), z,

%p 2*len + 2), z, 2*n), n = 0..len) end:

%p cn_list(2, 15); # _Peter Luschny_, Mar 25 2024

%t nmax = 20;

%t DeleteCases[CoefficientList[JacobiCN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax])! (* _Jean-François Alcover_, Mar 28 2024 *)

%o (PARI) /* C(x) = Jacobi Elliptic Function cn(x,k) at k = 2: */

%o {a(n) = my(k=2,C=1,S=x,D=1); for(i=1,n,

%o S = intformal(C*D + x*O(x^(2*n+1)));

%o C = 1 - intformal(S*D);

%o D = 1 - k^2*intformal(S*C)); (2*n)!*polcoeff(C,2*n)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A028296 (cn(x,1)), A060627 (cn(x,k)).

%Y Cf. A370542 (sn(x,2)), A370544 (dn(x,2)), A249282.

%K sign

%O 0,3

%A _Paul D. Hanna_, Mar 25 2024