login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060627 1+Sum_{n >= 1} Sum_{k = 0..n-1} (-1)^n*T(n,k)*y^(2*k)*x^(2*n)/(2*n)! = JacobiCN(x,y). 9
1, 1, 4, 1, 44, 16, 1, 408, 912, 64, 1, 3688, 30768, 15808, 256, 1, 33212, 870640, 1538560, 259328, 1024, 1, 298932, 22945056, 106923008, 65008896, 4180992, 4096, 1, 2690416, 586629984, 6337665152, 9860488448, 2536974336, 67047424, 16384 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Essentially same triangle as triangle given by [1, 0, 9, 0, 25, 0, 49, 0, 81, 0, 121, ...] DELTA [0, 4, 0, 16, 0, 36, 0, 64, 0, 100, ...] where DELTA is the operator defined in A084938 . - Philippe Deléham, Jun 13 2004

For the recurrence of the row polynomials b_n(y^2) for cn(x|y^2) = Sum_{n >=0} b_n(y^2)*x^(2*n)/(2*n)! see the Fricke reference, where y=k. - Wolfdieter Lang, Jul 05 2016

REFERENCES

CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 526.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(5.2.20).

H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

LINKS

Table of n, a(n) for n=1..36.

F. Clarke, The Taylor Series Coefficients of the Jacobi Elliptic Functions, slides. [broken link]

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 575, 16.22.2.

P. Bala, A triangle for calculating A060627

D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA]

R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Erster Teil, p. 399 with p. 397.

Eric W. Weisstein, Jacobi Elliptic Functions

FORMULA

JacobiCN(x, y)=1 - 1/2*x^2 + (1/24 + 1/6*y^2)*x^4 + ( - 1/720 - 11/180*y^2 - 1/45*y^4)*x^6 + (1/40320 + 17/1680*y^2 + 19/840*y^4 + 1/630*y^6)*x^8 + ( - 1/3628800 - 247/56700*y^6 - 461/453600*y^2 - 641/75600*y^4 - 1/14175*y^8)*x^10 + O(x^12).

From Peter Bala, Aug 23 2011: (Start)

The Taylor expansion of the Jacobian elliptic function cn(x,k) begins

  cn(x,k) = 1-x^2/2!+(1+4*k^2)*x^4/4!-(1+44*k^2+16*k^4)*x^6/6!+....

The coefficient polynomials in this expansion can be calculated using nested derivatives as follows (see [Dominici, Theorem 4.1 and Example 4.5]):

Let f(x) = sqrt(k^2-sin^2(x)). Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0.

Then the coefficient polynomial R(2*n,k) of x^(2*n)/(2*n)! in the expansion of cn(x,k) is given by R(2*n,k) = D^(2*n)[f](0).

See A145271 for the coefficients in the expansion of D^n[f](x) in powers of f(x). See A181613 for the expansion of the reciprocal function 1/cn(x,k).

(End)

G.f. 1/(1 - x/(1 - (2*k)^2*x/(1 - 3^2*x/(1 - (4*k)^2*x/(1 - 5^2*x/(1 - ...)))))) = 1 + x + (1 + 4*k^2)*x^2 + (1 + 44*k^2 + 16*k^4)*x^3 + ... (see Wall, 94.19, p. 374). - Peter Bala, Apr 25 2017

EXAMPLE

The first rows of triangle T(n, k), n >= 1, k = 0..n-1, are:

[1], [1, 4], [1, 44, 16], [1, 408, 912, 64], [1, 3688, 30768, 15808, 256], [1, 33212, 870640, 1538560, 259328, 1024], [1, 298932, 22945056, 106923008, 65008896, 4180992, 4096], [1, 2690416, 586629984, 6337665152, 9860488448, 2536974336, 67047424, 16384], ...

MAPLE

A060627 := proc(n, m) JacobiCN(z, k) ; coeftayl(%, z=0, 2*n) ; (-1)^n*coeftayl(%, k=0, 2*m)*(2*n)! ; end proc: # R. J. Mathar, Jan 30 2011

MATHEMATICA

nmax = 8; se = Series[JacobiCN[x, y], {x, 0, 2*nmax} ]; t[n_, m_] := (-1)^n*Coefficient[se, x, 2*n] *(2*n)! // Coefficient[#, y, m]&; Table[t[n, m], {n, 1, nmax}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Mar 26 2013 *)

CROSSREFS

Row sums: A000364.

Cf. A002754, A060628, A145271, A181612, A181613.

Sequence in context: A302441 A269906 A092667 * A113101 A316159 A113112

Adjacent sequences:  A060624 A060625 A060626 * A060628 A060629 A060630

KEYWORD

easy,nonn,tabl

AUTHOR

Vladeta Jovovic, Apr 13 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 18:57 EDT 2019. Contains 327981 sequences. (Running on oeis4.)