login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247917
Expansion of 1 / (1 + x - x^3) in powers of x.
6
1, -1, 1, 0, -1, 2, -2, 1, 1, -3, 4, -3, 0, 4, -7, 7, -3, -4, 11, -14, 10, 1, -15, 25, -24, 9, 16, -40, 49, -33, -7, 56, -89, 82, -26, -63, 145, -171, 108, 37, -208, 316, -279, 71, 245, -524, 595, -350, -174, 769, -1119, 945, -176, -943, 1888, -2064, 1121
OFFSET
0,6
FORMULA
G.f.: 1 / (1 + x - x^3).
0 = a(n) - a(n+2) - a(n+3) for all n in Z.
a(-n) = A000931(n) for all n in Z.
a(n) = A176971(n+3) for all n in Z.
-a(n) = A104769(n+1) for all n in Z.
(-1)^n * a(n) = A050935(n+3) for all n in Z.
-(-1)^n * a(n) = A078013(n+3) for all n in Z.
EXAMPLE
G.f. = 1 - x + x^2 - x^4 + 2*x^5 - 2*x^6 + x^7 + x^8 - 3*x^9 + 4*x^10 + ...
MATHEMATICA
CoefficientList[Series[1/(1 + x - x^3), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *)
PROG
(PARI) {a(n) = if( n<0, n = -3-n; polcoeff( 1 / (1 - x^2 - x^3) + x * O(x^n), n), polcoeff( 1 / (1 + x - x^3) + x * O(x^n), n))};
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 + x - x^3))); // G. C. Greubel, Aug 04 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Michael Somos, Sep 26 2014
STATUS
approved