login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050935
a(n) = a(n-1) - a(n-3) with a(1)=0, a(2)=0, a(3)=1.
15
0, 0, 1, 1, 1, 0, -1, -2, -2, -1, 1, 3, 4, 3, 0, -4, -7, -7, -3, 4, 11, 14, 10, -1, -15, -25, -24, -9, 16, 40, 49, 33, -7, -56, -89, -82, -26, 63, 145, 171, 108, -37, -208, -316, -279, -71, 245, 524, 595, 350, -174, -769, -1119, -945, -176, 943, 1888, 2064, 1121, -767, -2831, -3952
OFFSET
1,8
COMMENTS
The Ze3 sums, see A180662, of triangle A108299 equal the terms of this sequence without the two leading zeros. [Johannes W. Meijer, Aug 14 2011]
REFERENCES
R. Palmaccio, "Average Temperatures Modeled with Complex Numbers", Mathematics and Informatics Quarterly, pp. 9-17 of Vol. 3, No. 1, March 1993.
LINKS
José L. Ramírez, Víctor F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et Informaticae, 45 (2015) pp. 91-105.
FORMULA
From Paul Barry, Oct 20 2004: (Start)
G.f.: x^2/(1-x+x^3).
a(n+2) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k. (End)
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(12*k-1 + x^2)/( x*(12*k+5 + x^2 ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 12 2013
MAPLE
A050935 := proc(n) option remember; if n <= 1 then 0 elif n = 2 then 1 else A050935(n-1)-A050935(n-3); fi; end: seq(A050935(n), n=0..61);
MATHEMATICA
LinearRecurrence[{1, 0, -1}, {0, 0, 1}, 70] (* Harvey P. Dale, Jan 30 2014 *)
PROG
(Haskell)
a050935 n = a050935_list !! (n-1)
a050935_list = 0 : 0 : 1 : zipWith (-) (drop 2 a050935_list) a050935_list
-- Reinhard Zumkeller, Jan 01 2012
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -1, 0, 1]^(n-1)*[0; 0; 1])[1, 1] \\ Charles R Greathouse IV, Feb 06 2017
CROSSREFS
When run backwards this gives a signed version of A000931.
Cf. A099529.
Apart from signs, essentially the same as A078013.
Cf. A203400 (partial sums).
Sequence in context: A228371 A176971 A247917 * A104769 A078013 A086461
KEYWORD
easy,nice,sign
AUTHOR
Richard J. Palmaccio (palmacr(AT)pinecrest.edu), Dec 31 1999
EXTENSIONS
Offset adjusted by Reinhard Zumkeller, Jan 01 2012
STATUS
approved