OFFSET
1,8
COMMENTS
REFERENCES
R. Palmaccio, "Average Temperatures Modeled with Complex Numbers", Mathematics and Informatics Quarterly, pp. 9-17 of Vol. 3, No. 1, March 1993.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
José L. Ramírez, Víctor F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et Informaticae, 45 (2015) pp. 91-105.
Index entries for linear recurrences with constant coefficients, signature (1, 0, -1).
FORMULA
From Paul Barry, Oct 20 2004: (Start)
G.f.: x^2/(1-x+x^3).
a(n+2) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k. (End)
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(12*k-1 + x^2)/( x*(12*k+5 + x^2 ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 12 2013
MAPLE
MATHEMATICA
LinearRecurrence[{1, 0, -1}, {0, 0, 1}, 70] (* Harvey P. Dale, Jan 30 2014 *)
PROG
(Haskell)
a050935 n = a050935_list !! (n-1)
a050935_list = 0 : 0 : 1 : zipWith (-) (drop 2 a050935_list) a050935_list
-- Reinhard Zumkeller, Jan 01 2012
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -1, 0, 1]^(n-1)*[0; 0; 1])[1, 1] \\ Charles R Greathouse IV, Feb 06 2017
CROSSREFS
KEYWORD
easy,nice,sign
AUTHOR
Richard J. Palmaccio (palmacr(AT)pinecrest.edu), Dec 31 1999
EXTENSIONS
Offset adjusted by Reinhard Zumkeller, Jan 01 2012
STATUS
approved