

A050937


Nonprime Fibonacci numbers with a prime index.


22



1, 4181, 1346269, 24157817, 165580141, 53316291173, 956722026041, 2504730781961, 44945570212853, 308061521170129, 806515533049393, 14472334024676221, 1779979416004714189, 83621143489848422977
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A Fibonacci number with a composite index is divisible by the Fibonacci numbers indexed by the divisors of the index (e.g., F(12) is divisible by F(3), F(4), F(6)), which would suggest that Fibonacci numbers indexed by primes are also themselves primes. This sequence clearly shows that not to be the case.


REFERENCES

David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry 4181.


LINKS

Table of n, a(n) for n=1..14.
Vladimir Drobot, On primes in the Fibonacci sequence, Fib. Quart. 38 (1) (2000) 71


EXAMPLE

Fibonacci(2) = 1 is not prime, but its index 2 is prime.
Fibonacci(19) = 4181 is a composite Fibonacci number, but its index 19 is prime.


MAPLE

for n from 1 to 200 do if isprime(n) and (not isprime( fibonacci(n))) then print( fibonacci(n)): fi: od:


MATHEMATICA

Select[Table[Fibonacci[Prime[n]], {n, 25}], Not[PrimeQ[#]] &] (* Alonso del Arte, Nov 22 2010 *)


PROG

(PARI) f(n) = forprime(x=2, n, p=fibonacci(x); if(!isprime(p), print1(p", "))) \\ Cino Hilliard, Feb 11 2004


CROSSREFS

Cf. A038672 (indices).
Sequence in context: A072322 A045728 A048593 * A135953 A236805 A202530
Adjacent sequences: A050934 A050935 A050936 * A050938 A050939 A050940


KEYWORD

nonn,easy


AUTHOR

Jud McCranie, Jan 01 2000


STATUS

approved



