login
A104769
G.f. -x/(1+x-x^3).
8
0, -1, 1, -1, 0, 1, -2, 2, -1, -1, 3, -4, 3, 0, -4, 7, -7, 3, 4, -11, 14, -10, -1, 15, -25, 24, -9, -16, 40, -49, 33, 7, -56, 89, -82, 26, 63, -145, 171, -108, -37, 208, -316, 279, -71, -245, 524, -595, 350, 174, -769, 1119, -945, 176, 943, -1888, 2064, -1121, -767, 2831, -3952
OFFSET
0,7
COMMENTS
Generating floretion is "jesright".
Pisano period lengths: 1, 7, 13, 14, 24, 91, 48, 28, 39, 168, 120, 182, 183, 336, 312, 56, 288, 273, 180, 168,.. (which differs from A104217 for example at index 23). - R. J. Mathar, Aug 10 2012
FORMULA
a(n) = -A247917(n-1).
Recurrence: a(n+3) = a(n) - a(n+2); a(0) = 0, a(1) = -1, a(2) = 1.
a(n+1) - a(n) = ((-1)^(n+1))*a(n+5).
a(n) = ((-1)^n)*A050935(n+1) = ((-1)^n)*A078013(n+2).
a(n) = A104771(n) - A104770(n).
MATHEMATICA
LinearRecurrence[{-1, 0, 1}, {0, -1, 1}, 61] (* or *)
CoefficientList[Series[-x/(1 + x - x^3), {x, 0, 60}], x] (* Michael De Vlieger, Jul 02 2021 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 0, -1]^n*[0; -1; 1])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
Apart from signs, essentially the same as A050935 and A078013.
Cf. A247917 (negative).
Sequence in context: A176971 A247917 A050935 * A078013 A086461 A047089
KEYWORD
sign,easy,less
AUTHOR
Creighton Dement, Mar 24 2005
EXTENSIONS
Edited by Ralf Stephan, Apr 05 2009
STATUS
approved