login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176971
Expansion of (1+x)/(1+x-x^3) in powers of x.
7
1, 0, 0, 1, -1, 1, 0, -1, 2, -2, 1, 1, -3, 4, -3, 0, 4, -7, 7, -3, -4, 11, -14, 10, 1, -15, 25, -24, 9, 16, -40, 49, -33, -7, 56, -89, 82, -26, -63, 145, -171, 108, 37, -208, 316, -279, 71, 245, -524, 595
OFFSET
0,9
COMMENTS
Except for signs the sequence is the essentially same as A078013, A050935 and A104769.
Padovan sequence extended to negative indices. - Hugo Pfoertner, Jul 16 2017
LINKS
Yüksel Soykan, Summing Formulas For Generalized Tribonacci Numbers, arXiv:1910.03490 [math.GM], 2019.
FORMULA
a(n) = A000931(n)^2 -A000931(n-1)*A000931(n+1).
a(n) = -a(n-1) +a(n-3). - R. J. Mathar, Apr 30 2010
a(n) = -A104769(n) - A104769(n+1). - Ralf Stephan, Aug 18 2013
G.f.: 1 / (1 - x^3 / (1 + x)). - Michael Somos, Dec 13 2013
a(n) = A182097(-n) for all n in Z. - Michael Somos, Dec 13 2013
A000931(n) = a(n)^2 - a(n-1) * a(n+1). - Michael Somos, Dec 13 2013
Binomial transform is A005251(n+1). - Michael Somos, Dec 13 2013
EXAMPLE
G.f. = 1 + x^3 - x^4 + x^5 - x^7 + 2*x^8 - 2*x^9 + x^10 + x^11 - 3*x^12 + ...
MATHEMATICA
a[0] := 1; a[1] = 0; a[2] = 0;
a[n_] := a[n] = a[n - 2] + a[n - 3];
b = Table[a[n], {n, 0, 50}];
Table[b[[n]]^2 - b[[n - 1]]*b[[n + 1]], {n, 1, Length[b] - 1}]
a[ n_] := If[ n >= 0, SeriesCoefficient[ (1 + x) / (1 + x - x^3), {x, 0, n}], SeriesCoefficient[ 1 / (1 - x^2 - x^3), {x, 0, Abs@n}]]; (* Michael Somos, Dec 13 2013 *)
PROG
(PARI) {a(n) = if( n>=0, polcoeff( (1 + x) / (1 + x - x^3) + x * O(x^n), n), polcoeff( 1 / (1 - x^2 - x^3) + x * O(x^-n), -n))}; /* Michael Somos, Dec 13 2013 */
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)/(1+x-x^3))); // G. C. Greubel, Sep 25 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Apr 29 2010
EXTENSIONS
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved