OFFSET
0,6
COMMENTS
Number of compositions (ordered partitions) into parts 2 and 3. - Joerg Arndt, Aug 21 2013
a(n) is the top left entry of the n-th power of any of the 3X3 matrices [0, 1, 1; 0, 0, 1; 1, 0, 0], [0, 1, 0; 1, 0, 1; 1, 0, 0], [0, 1, 1; 1, 0, 0; 0, 1, 0] or [0, 0, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Conjectured values of d(n), the dimension of a Z-module in MZV(conv). See the Waldschmidt link. - Michael Somos, Mar 14 2014
Shannon et al. (2006) call these the Van der Laan numbers. - N. J. A. Sloane, Jan 11 2022
REFERENCES
A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See R_n.
Michel Waldschmidt, "Multiple Zeta values and Euler-Zagier numbers", in Number theory and discrete mathematics, International conference in honour of Srinivasa Ramanujan, Center for Advanced Study in Mathematics, Panjab University, Chandigarh, (Oct 02, 2000).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
M. Hoffman, The algebra of multiharmonic series, Journ. of Alg., Vol. 192, Issue 2 (Aug 1997), 477-495.
I. E. Leonard and A. C. F. Liu, A familiar recurrence occurs again, Amer. Math. Monthly, 119 (2012), 333-336.
R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 (2014), eq. (32).
Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
Michel Waldschmidt, Multiple Zeta values and Euler-Zagier numbers, Slides, Number theory and discrete mathematics, International conference in honour of Srinivasa Ramanujan, Center for Advanced Study in Mathematics, Panjab University, Chandigarh, (Oct 02, 2000).
Index entries for linear recurrences with constant coefficients, signature (0,1,1).
FORMULA
EXAMPLE
G.f. = 1 + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
MATHEMATICA
a[ n_] := If[n < 0, SeriesCoefficient[ (1 + x) / (1 + x - x^3), {x, 0, -n}], SeriesCoefficient[ 1 / (1 - x^2 - x^3), {x, 0, n}]]; (* Michael Somos, Dec 13 2013 *)
CoefficientList[Series[1/(1-x^2-x^3), {x, 0, 60}], x] (* or *) LinearRecurrence[ {0, 1, 1}, {1, 0, 1}, 70] (* Harvey P. Dale, Dec 04 2014 *)
PROG
(PARI) {a(n) = if( n<0, polcoeff( (1 + x) / (1 + x - x^3) + x * O(x^-n), -n), polcoeff( 1 / (1 - x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, Dec 13 2013 */
(PARI) Vec(1/(1-x^2-x^3) + O(x^99)) \\ Altug Alkan, Sep 02 2016
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3))); // G. C. Greubel, Aug 11 2018
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Apr 11 2012
STATUS
approved