The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182097 Expansion of 1/(1-x^2-x^3). 28
 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081, 922111, 1221537, 1618192, 2143648, 2839729, 3761840, 4983377, 6601569, 8745217 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Number of compositions (ordered partitions) into parts 2 and 3. - Joerg Arndt, Aug 21 2013 a(n) is the top left entry of the n-th power of any of the 3X3 matrices [0, 1, 1; 0, 0, 1; 1, 0, 0], [0, 1, 0; 1, 0, 1; 1, 0, 0], [0, 1, 1; 1, 0, 0; 0, 1, 0] or [0, 0, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014 Conjectured values of d(n), the dimension of a Z-module in MZV(conv). See the Waldschmidt link. - Michael Somos, Mar 14 2014 Shannon et al. (2006) call these the Van der Laan numbers. - N. J. A. Sloane, Jan 11 2022 REFERENCES A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See R_n. Michel Waldschmidt, "Multiple Zeta values and Euler-Zagier numbers", in Number theory and discrete mathematics, International conference in honour of Srinivasa Ramanujan, Center for Advanced Study in Mathematics, Panjab University, Chandigarh, (Oct 02, 2000). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 M. Hoffman, The algebra of multiharmonic series, Journ. of Alg., Vol. 192, Issue 2 (Aug 1997), 477-495. I. E. Leonard and A. C. F. Liu, A familiar recurrence occurs again, Amer. Math. Monthly, 119 (2012), 333-336. R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 (2014), eq. (32). Michel Waldschmidt, Multiple Zeta values and Euler-Zagier numbers, Slides, Number theory and discrete mathematics, International conference in honour of Srinivasa Ramanujan, Center for Advanced Study in Mathematics, Panjab University, Chandigarh, (Oct 02, 2000). Index entries for linear recurrences with constant coefficients, signature (0,1,1). FORMULA G.f.: 1 / (1 - x^2 - x^3). a(n) = A000931(n+3). From Michael Somos, Dec 13 2013: (Start) a(n) = A176971(-n). a(n) = a(n-2) + a(n-3) for all n in Z. a(n-7) = A133034(n). a(n-5) = A078027(n). a(n-3) = A000931(n). a(n+2) = A134816(n). a(n+4) = A164001(n) if n > 1. - (End) a(n) = (A001608(n) - A000931(n))/2. - Elmo R. Oliveira, Dec 31 2022 EXAMPLE G.f. = 1 + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ... MATHEMATICA a[ n_] := If[n < 0, SeriesCoefficient[ (1 + x) / (1 + x - x^3), {x, 0, -n}], SeriesCoefficient[ 1 / (1 - x^2 - x^3), {x, 0, n}]]; (* Michael Somos, Dec 13 2013 *) CoefficientList[Series[1/(1-x^2-x^3), {x, 0, 60}], x] (* or *) LinearRecurrence[ {0, 1, 1}, {1, 0, 1}, 70] (* Harvey P. Dale, Dec 04 2014 *) PROG (PARI) {a(n) = if( n<0, polcoeff( (1 + x) / (1 + x - x^3) + x * O(x^-n), -n), polcoeff( 1 / (1 - x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, Dec 13 2013 */ (PARI) Vec(1/(1-x^2-x^3) + O(x^99)) \\ Altug Alkan, Sep 02 2016 (Magma) m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3))); // G. C. Greubel, Aug 11 2018 CROSSREFS The following are basically all variants of the same sequence: A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry. Cf. A000931, A001608. Sequence in context: A078027 A134816 A228361 * A290697 A290821 A072493 Adjacent sequences: A182094 A182095 A182096 * A182098 A182099 A182100 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Apr 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 10:06 EST 2023. Contains 367678 sequences. (Running on oeis4.)