OFFSET
0,11
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., 6 (2003), #03.2.3.
Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
Index entries for linear recurrences with constant coefficients, signature (0,1,1).
FORMULA
a(n) is asymptotic to r^(n-2) / (2*r+3) where r = 1.3247179572447..., the real root of x^3 = x + 1. For n >= 4, a(n) = a(n-2) + a(n-3). - Philippe Deléham, Jan 13 2004
MAPLE
seq(coeff(series((1-x)/(1-x^2-x^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Aug 04 2019
MATHEMATICA
CoefficientList[Series[(1-x)/(1-x^2-x^3), {x, 0, 60}], x] (* G. C. Greubel, Aug 04 2019 *)
LinearRecurrence[{0, 1, 1}, {1, -1, 1}, 60] (* Harvey P. Dale, Jun 20 2020 *)
PROG
(PARI) Vec((1-x)/(1-x^2-x^3)+O(x^60)) \\ Charles R Greathouse IV, Sep 23 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x)/(1-x^2-x^3) )); // G. C. Greubel, Aug 04 2019
(Sage) ((1-x)/(1-x^2-x^3)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 04 2019
(GAP) a:=[1, -1, 1];; for n in [4..60] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Aug 04 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved