login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078026
Expansion of (1-x)/(1-x^2-2*x^3).
2
1, -1, 1, 1, -1, 3, 1, 1, 7, 3, 9, 17, 15, 35, 49, 65, 119, 163, 249, 401, 575, 899, 1377, 2049, 3175, 4803, 7273, 11153, 16879, 25699, 39185, 59457, 90583, 137827, 209497, 318993, 485151, 737987, 1123137, 1708289, 2599111, 3954563, 6015689, 9152785, 13924815
OFFSET
0,6
FORMULA
a(n) = Sum_{m=1..n} Sum_{i=0..n-m} binomial(m+i-1,m-1)*Sum_{j=0..m} binomial(j,n-3*m+2*j-i)*2^(m-j)*binomial(m,j)*(-1)^(-n+3*m-j+i)). - Vladimir Kruchinin, May 12 2011
MAPLE
seq(coeff(series((1-x)/(-2*x^3-x^2+1), x, n+1), x, n), n = 0..50); # G. C. Greubel, Aug 04 2019
MATHEMATICA
CoefficientList[Series[(1-x)/(1-x^2-2*x^3), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jan 24 2017 *)
PROG
(Maxima)
a(n):=sum(sum(binomial(m+i-1, m-1)*sum(binomial(j, n-3*m+2*j-i)*2^(m-j)*binomial(m, j)*(-1)^(-n+3*m-j+i), j, 0, m), i, 0, n-m), m, 1, n); /* Vladimir Kruchinin, May 12 2011 */
(PARI) Vec((1-x)/(1-x^2-2*x^3) + O(x^50)) \\ Felix Fröhlich, Jan 24 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x^2-2*x^3) )); // G. C. Greubel, Aug 04 2019
(Sage) ((1-x)/(1-x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Aug 04 2019
(GAP) a:=[1, -1, 1];; for n in [4..50] do a[n]:=a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Aug 04 2019
CROSSREFS
Sequence in context: A116407 A309402 A135288 * A350635 A126713 A140068
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved