The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135288 Simple example of tridiagonal one sequence system using the Fibonacci sequence to give a triangular sequence based on the coefficients of the characteristic polynomials. 0
 1, 1, -1, -3, -1, 1, -7, 3, 3, -1, 17, 12, -9, -4, 1, 43, -8, -41, 6, 8, -1, -109, -96, 91, 72, -20, -12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 REFERENCES Joanne Dombrowski, Tridiagonal matrix representations of cyclic selfadjoint operators, Pacific J. Math. 114, no. 2 (1984), 325-334. LINKS FORMULA main diagonal of matrices:M(n) a(n)=Fibonacci[n] a0(n,m)=if [m=1,a(n), else (-1)^(n+1) Symmetrical sub-diagonal: b(n)=1 t(n,m)=Coefficients of polynomials of(M(n)) EXAMPLE {{1}, {1, -1}, {-3, -1, 1}, {-7, 3, 3, -1}, {17, 12, -9, -4, 1}, {43, -8, -41,6, 8, -1}, {-109, -96, 91, 72, -20, -12, 1}} MATHEMATICA Clear[A, a] (* A124032*) a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2]; A[1] = {{a[1]}}; A[2] = {{a[2], 1}, {1, -1}}; A[3] = {{a[3], 1, 0}, {1, -1, 1}, {0, 1, 1}}; A[4] = {{a[4], 1, 0, 0}, {1, -1, 1, 0}, {0, 1, 1, 1}, {0, 0, 1, -1}}; A[5] = {{a[5], 1, 0, 0, 0}, {1, -1, 1, 0, 0}, {0, 1, 1, 1, 0}, {0, 0, 1, -1, 1}, {0, 0, 0, 1, 1}}; A[6] = {{a[6], 1, 0, 0, 0, 0}, {1, -1, 1, 0, 0, 0}, {0, 1, 1, 1, 0, 0}, {0, 0, 1, -1, 1, 0}, {0, 0, 0, 1, 1, 1}, {0, 0, 0, 0, 1, -1}}; TableForm[Table[Inverse[A[n]], {n, 1, 6}]]; Join[{a[0]}, Table[CharacteristicPolynomial[A[n], x], {n, 1, 6}]]; a0 = Join[{a[0]}, Table[CoefficientList[CharacteristicPolynomial[A[n], x], x], {n, 1, 6}]]; Flatten[a0] CROSSREFS Cf. A124032. Sequence in context: A228524 A116407 A309402 * A078026 A126713 A140068 Adjacent sequences:  A135285 A135286 A135287 * A135289 A135290 A135291 KEYWORD uned,sign AUTHOR Roger L. Bagula, Feb 16 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 15:03 EDT 2021. Contains 345141 sequences. (Running on oeis4.)