login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126713
The triangle K referred to in A038200, read along rows.
2
1, -1, 1, 1, -3, 1, -1, 7, -4, 1, 1, -15, 10, -5, 1, -1, 31, -19, 15, -6, 1, 1, -63, 28, -35, 21, -7, 1, -1, 127, -28, 71, -56, 28, -8, 1, 1, -255, 1, -135, 126, -84, 36, -9, 1, -1, 511, 80, 255, -251, 210, -120, 45, -10, 1, 1, -1023, -242, -495, 451, -462, 330, -165, 55, -11, 1, -1, 2047, 485, 991, -726, 925, -792, 495, -220
OFFSET
0,5
COMMENTS
This means the description of A038200 is slightly incorrect and ought be: "Row sums of triangle K(m,n), inverse to a triangle obtained from A020921 after eliminating the leftmost column."
FORMULA
G.f.: (1/(1+x))*Sum(x^(k-1)/((1+x)^k-y*x^k),k=1..infinity). - Vladeta Jovovic, Feb 26 2008
EXAMPLE
If the leftmost column of the triangle in A020921 is deleted we get
1
1 1
2 3 1
2 5 4 1
4 10 10 5 1
2 11 19 15 6 1
6 21 35 35 21 7 1
4 22 52 69 56 28 8 1
6 33 83 126 126 84 36 9 1
The present triangle is the inverse of this, namely
1
-1 1
1 -3 1
-1 7 -4 1
1 -15 10 -5 1
-1 31 -19 15 -6 1
1 -63 28 -35 21 -7 1
-1 127 -28 71 -56 28 -8 1
with row sums 1,0,-1,3,-8,21,-54,134,-318,720 of A038200.
MAPLE
A020921 := proc(n, k) option remember; local divs; if n <= 0 then 1; elif k > n then 0; else divs := numtheory[divisors](n); add(numtheory[mobius](op(i, divs))*binomial(n/op(i, divs), k), i=1..nops(divs)); fi; end: A020921t := proc(n, k) option remember; A020921(n+1, k+1); end: TriLInv := proc(nmax) local a, row, col; a := array(0..nmax, 0..nmax); for row from 0 to nmax do for col from row+1 to nmax do a[row, col] := 0; od; od; for row from 0 to nmax do for col from row to 0 by -1 do if row <> col then a[row, col] := -add(a[row, c]*A020921t(c, col), c=col+1..row)/A020921t(col, col); else a[row, col] := (1-add(a[row, c]*A020921t(c, col), c=col+1..row))/A020921t(col, col); fi; od; od; RETURN(a); end: nmax := 12 : a := TriLInv(nmax) : for row from 0 to nmax do for col from 0 to row do printf("%d, ", a[row, col]); od; od:
MATHEMATICA
f[n_] := (1/(1+x))*Sum[x^(k-1)/((1+x)^k-y*x^k), {k, 1, n+1}]; t[0, 0] = 1; t[n_, k_] := SeriesCoefficient[f[n], {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 13 2013, after Vladeta Jovovic *)
CROSSREFS
Cf. A039912.
Sequence in context: A135288 A078026 A350635 * A140068 A179745 A121300
KEYWORD
sign,tabl
AUTHOR
R. J. Mathar, Feb 12 2007
STATUS
approved