login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020921
Triangle read by rows: T(m,n) = number of solutions to 1 <= a(1) < a(2) < ... < a(m) <= n, where gcd( a(1), a(2), ..., a(m), n) = 1.
8
1, 1, 1, 0, 1, 1, 0, 2, 3, 1, 0, 2, 5, 4, 1, 0, 4, 10, 10, 5, 1, 0, 2, 11, 19, 15, 6, 1, 0, 6, 21, 35, 35, 21, 7, 1, 0, 4, 22, 52, 69, 56, 28, 8, 1, 0, 6, 33, 83, 126, 126, 84, 36, 9, 1, 0, 4, 34, 110, 205, 251, 210, 120, 45, 10, 1, 0, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11
OFFSET
0,8
EXAMPLE
From R. J. Mathar, Feb 12 2007: (Start)
Triangle begins
1
1 1
0 1 1
0 2 3 1
0 2 5 4 1
0 4 10 10 5 1
0 2 11 19 15 6 1
0 6 21 35 35 21 7 1
0 4 22 52 69 56 28 8 1
0 6 33 83 126 126 84 36 9 1
0 4 34 110 205 251 210 120 45 10 1
The inverse of the triangle is
1
-1 1
1 -1 1
-1 1 -3 1
1 -1 7 -4 1
-1 1 -15 10 -5 1
1 -1 31 -19 15 -6 1
-1 1 -63 28 -35 21 -7 1
1 -1 127 -28 71 -56 28 -8 1
-1 1 -255 1 -135 126 -84 36 -9 1
1 -1 511 80 255 -251 210 -120 45 -10 1
with row sums 1,0,1,-2,4,-9,22,-55,135,-319,721,...(cf. A038200).
(End)
MAPLE
A020921 := proc(n, k) option remember ; local divs ; if n <= 0 then 1 ; elif k > n then 0 ; else divs := numtheory[divisors](n) ; add(numtheory[mobius](op(i, divs))*binomial(n/op(i, divs), k), i=1..nops(divs)) ; fi ; end: nmax := 10 ; for row from 0 to nmax do for col from 0 to row do printf("%d, ", A020921(row, col)) ; od ; od ; # R. J. Mathar, Feb 12 2007
MATHEMATICA
nmax = 11; t[n_, k_] := Total[ MoebiusMu[#]*Binomial[n/#, k] & /@ Divisors[n]]; t[0, 0] = 1; Flatten[ Table[t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after PARI *)
PROG
(PARI) {T(n, k) = if( n<=0, k==0 && n==0, sumdiv(n, d, moebius(d) * binomial(n/d, k)))}
(Sage) # uses[DivisorTriangle from A327029]
DivisorTriangle(moebius, binomial, 13) # Peter Luschny, Aug 24 2019
CROSSREFS
(Left-hand) columns include A000010, A102309. Row sums are essentially A027375.
Cf. A327029.
Sequence in context: A365196 A372257 A253580 * A293113 A366528 A154720
KEYWORD
nonn,tabl,nice,easy,changed
AUTHOR
Michael Somos, Nov 17 2002
STATUS
approved