OFFSET
0,8
LINKS
Temba Shonhiwa, A Generalization of the Euler and Jordan Totient Functions, Fib. Quart., 37 (1999), 67-76.
EXAMPLE
From R. J. Mathar, Feb 12 2007: (Start)
Triangle begins
1
1 1
0 1 1
0 2 3 1
0 2 5 4 1
0 4 10 10 5 1
0 2 11 19 15 6 1
0 6 21 35 35 21 7 1
0 4 22 52 69 56 28 8 1
0 6 33 83 126 126 84 36 9 1
0 4 34 110 205 251 210 120 45 10 1
The inverse of the triangle is
1
-1 1
1 -1 1
-1 1 -3 1
1 -1 7 -4 1
-1 1 -15 10 -5 1
1 -1 31 -19 15 -6 1
-1 1 -63 28 -35 21 -7 1
1 -1 127 -28 71 -56 28 -8 1
-1 1 -255 1 -135 126 -84 36 -9 1
1 -1 511 80 255 -251 210 -120 45 -10 1
with row sums 1,0,1,-2,4,-9,22,-55,135,-319,721,...(cf. A038200).
(End)
MAPLE
A020921 := proc(n, k) option remember ; local divs ; if n <= 0 then 1 ; elif k > n then 0 ; else divs := numtheory[divisors](n) ; add(numtheory[mobius](op(i, divs))*binomial(n/op(i, divs), k), i=1..nops(divs)) ; fi ; end: nmax := 10 ; for row from 0 to nmax do for col from 0 to row do printf("%d, ", A020921(row, col)) ; od ; od ; # R. J. Mathar, Feb 12 2007
MATHEMATICA
nmax = 11; t[n_, k_] := Total[ MoebiusMu[#]*Binomial[n/#, k] & /@ Divisors[n]]; t[0, 0] = 1; Flatten[ Table[t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after PARI *)
PROG
(PARI) {T(n, k) = if( n<=0, k==0 && n==0, sumdiv(n, d, moebius(d) * binomial(n/d, k)))}
(Sage) # uses[DivisorTriangle from A327029]
DivisorTriangle(moebius, binomial, 13) # Peter Luschny, Aug 24 2019
CROSSREFS
KEYWORD
AUTHOR
Michael Somos, Nov 17 2002
STATUS
approved