login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126712
Height of steps in Recamán's sequence A064389.
1
0, 1, 1, 4, 4, 2, 2, 3, 3, 3, 3, 3, 3, 7, 5, 7, 7, 4, 4, 4, 4, 4, 4, 4, 4, 7, 5, 5, 5, 11, 11, 11, 11, 11, 11, 5, 11, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 11, 11, 11, 6, 6, 11, 9, 9, 6, 6, 11, 8, 8, 8, 6, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
OFFSET
1,4
EXAMPLE
The heights to reach 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24 in A064389 are b(1,2,3,...) = 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5 etc., as defined by b(n) = b(n-1) + sign(A064389(n) - A064389(n-1)).
Reshuffling sequence b while sorting A064489 into A078758 produces sequence a here, a(n) = b(A078758(n)).
MAPLE
A064389 := proc(nmax) local a, n, adiff, newa ; a := [1] ; for n from 2 to nmax do adiff := n ; while true do newa := op(-1, a)-adiff ; if newa >0 and not newa in a then a := [op(a), newa] ; break ; fi ; newa := op(-1, a)+adiff ; if newa >0 and not newa in a then a := [op(a), newa] ; break ; fi ; adiff := adiff+1 ; od ; od ; RETURN(a) ; end: A064389b := proc(a) local n, hei ; hei := [0] ; for n from 2 to nops(a) do hei := [op(hei), op(-1, hei)+sign(op(n, a)-op(n-1, a))] ; od ; RETURN(hei) ; end: inList := proc(list, n) local i ; for i from 1 to nops(list) do if op(i, list) = n then RETURN(i) ; fi ; od ; RETURN(-1) ; end: A078758 := proc(a064389) local a, n, i ; a := [] ; n :=1 ; while true do i := inList(a064389, n) ; if i < 0 then RETURN(a) ; else a := [op(a), i] ; n := n+1 ; fi ; od ; end: nmax := 1800 : a064389 := A064389(nmax) : a078758 := A078758(a064389) : b := A064389b(a064389) : for n from 1 to nops(a078758) do printf("%d, ", op(op(n, a078758), b)) ; od;
CROSSREFS
Sequence in context: A366470 A192977 A038800 * A162232 A029676 A105190
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Feb 12 2007
STATUS
approved