The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126712 Height of steps in Recamán's sequence A064389. 1

%I

%S 0,1,1,4,4,2,2,3,3,3,3,3,3,7,5,7,7,4,4,4,4,4,4,4,4,7,5,5,5,11,11,11,

%T 11,11,11,5,11,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,7,11,11,11,6,6,11,9,9,6,

%U 6,11,8,8,8,6,8,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7

%N Height of steps in Recamán's sequence A064389.

%e The heights to reach 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24 in A064389 are b(1,2,3,...) = 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5 etc., as defined by b(n) = b(n-1) + sign(A064389(n) - A064389(n-1)).

%e Reshuffling sequence b while sorting A064489 into A078758 produces sequence a here, a(n) = b(A078758(n)).

%p A064389 := proc(nmax) local a,n,adiff,newa ; a := [1] ; for n from 2 to nmax do adiff := n ; while true do newa := op(-1,a)-adiff ; if newa >0 and not newa in a then a := [op(a),newa] ; break ; fi ; newa := op(-1,a)+adiff ; if newa >0 and not newa in a then a := [op(a),newa] ; break ; fi ; adiff := adiff+1 ; od ; od ; RETURN(a) ; end: A064389b := proc(a) local n,hei ; hei := [0] ; for n from 2 to nops(a) do hei := [op(hei),op(-1,hei)+sign(op(n,a)-op(n-1,a))] ; od ; RETURN(hei) ; end: inList := proc(list,n) local i ; for i from 1 to nops(list) do if op(i,list) = n then RETURN(i) ; fi ; od ; RETURN(-1) ; end: A078758 := proc(a064389) local a,n,i ; a := [] ; n :=1 ; while true do i := inList(a064389,n) ; if i < 0 then RETURN(a) ; else a := [op(a),i] ; n := n+1 ; fi ; od ; end: nmax := 1800 : a064389 := A064389(nmax) : a078758 := A078758(a064389) : b := A064389b(a064389) : for n from 1 to nops(a078758) do printf("%d, ",op(op(n,a078758),b)) ; od;

%Y Cf. A064389, A078758.

%K easy,nonn

%O 1,4

%A _R. J. Mathar_, Feb 12 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 03:48 EST 2023. Contains 360082 sequences. (Running on oeis4.)