|
|
A078023
|
|
Expansion of (1-x)/(1-2*x^2-2*x^3).
|
|
1
|
|
|
1, -1, 2, 0, 2, 4, 4, 12, 16, 32, 56, 96, 176, 304, 544, 960, 1696, 3008, 5312, 9408, 16640, 29440, 52096, 92160, 163072, 288512, 510464, 903168, 1597952, 2827264, 5002240, 8850432, 15659008, 27705344, 49018880, 86728704, 153448448, 271495168, 480354304
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,2,2).
|
|
MATHEMATICA
|
CoefficientList[Series[(1-x)/(1-2*x^2-2*x^3), {x, 0, 40}], x] (* G. C. Greubel, Aug 04 2019 *)
|
|
PROG
|
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-2*x^2-2*x^3)) \\ G. C. Greubel, Aug 04 2019
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-2*x^2-2*x^3) )); // G. C. Greubel, Aug 04 2019
(Sage) ((1-x)/(1-2*x^2-2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Aug 04 2019
(GAP) a:=[1, -1, 2];; for n in [4..40] do a[n]:=2*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Aug 04 2019
|
|
CROSSREFS
|
Sequence in context: A011119 A240747 A120553 * A077484 A182064 A194751
Adjacent sequences: A078020 A078021 A078022 * A078024 A078025 A078026
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
N. J. A. Sloane, Nov 17 2002
|
|
STATUS
|
approved
|
|
|
|