The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078020 Expansion of (1-x)/(1-x+2*x^2). 5
 1, 0, -2, -2, 2, 6, 2, -10, -14, 6, 34, 22, -46, -90, 2, 182, 178, -186, -542, -170, 914, 1254, -574, -3082, -1934, 4230, 8098, -362, -16558, -15834, 17282, 48950, 14386, -83514, -112286, 54742, 279314, 169830, -388798, -728458, 49138, 1506054, 1407778, -1604330, -4419886, -1211226, 7628546 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equals the INVERT transform of [1, -1, -1, 1, 1, -1, -1, 1, 1,...], i.e. 1 followed by repeats of (-1, -1, 1, 1,...). - Gary W. Adamson, Sep 16 2008 Pisano period lengths: 1, 1, 8, 1, 24, 8, 21, 2, 24, 24, 10, 8,168, 21, 24, 2,144, 24,360, 24,... - R. J. Mathar, Aug 10 2012 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,-2). FORMULA a(n) = A107920(n+1) - A107920(n). - R. J. Mathar, Mar 14 2011 a(n) = (-1)^n*(A001607(n) + A001607(n-1)). - G. C. Greubel, Jun 29 2019 MATHEMATICA LinearRecurrence[{1, -2}, {1, 0}, 50] (* or *) CoefficientList[Series[(1 - x)/(1-x+2*x^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 29 2019 *) PROG (PARI) Vec((1-x)/(1-x+2*x^2)+O(x^50)) \\ Charles R Greathouse IV, Sep 25 2012 (MAGMA) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x+2*x^2) )); // G. C. Greubel, Jun 29 2019 (Sage) ((1-x)/(1-x+2*x^2)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019 (GAP) a:=[1, 0];; for n in [2..50] do a[n]:=a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Jun 29 2019 CROSSREFS Cf. A001607, A107920. Sequence in context: A278230 A230940 A110512 * A339091 A097521 A081668 Adjacent sequences:  A078017 A078018 A078019 * A078021 A078022 A078023 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 19:28 EDT 2021. Contains 343666 sequences. (Running on oeis4.)