login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078017
Expansion of (1-x)/(1-x+x^2+2*x^3).
2
1, 0, -1, -3, -2, 3, 11, 12, -5, -39, -58, -9, 127, 252, 143, -363, -1010, -933, 803, 3756, 4819, -543, -12874, -21969, -8009, 39708, 91655, 67965, -103106, -354381, -387205, 173388, 1269355, 1870377, 254246, -4154841, -8149841, -4503492, 11956031, 32759205, 29810158, -26861109
OFFSET
0,4
FORMULA
G.f.: (1-x)/(1-x+x^2+2*x^3).
a(n) = A077952(n) - A077952(n-1). - G. C. Greubel, Jun 29 2019
MATHEMATICA
LinearRecurrence[{1, -1, -2}, {1, 0, -1}, 50] (* or *) CoefficientList[ Series[(1-x)/(1-x+x^2+2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 29 2019 *)
PROG
(PARI) Vec((1-x)/(1-x+x^2+2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 27 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x+x^2+2*x^3) )); // G. C. Greubel, Jun 29 2019
(Sage) ((1-x)/(1-x+x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019
(GAP) a:=[1, 0, -1];; for n in [4..50] do a[n]:=a[n-1]-a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 29 2019
CROSSREFS
Cf. A077952.
Sequence in context: A290093 A186102 A170848 * A343170 A169816 A291739
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved