login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078019
Expansion of (1-x)/(1-x+2*x^2-x^3).
2
1, 0, -2, -1, 3, 3, -4, -7, 4, 14, -1, -25, -9, 40, 33, -56, -82, 63, 171, -37, -316, -71, 524, 350, -769, -945, 943, 2064, -767, -3952, -354, 6783, 3539, -10381, -10676, 13625, 24596, -13330, -48897, 2359, 86823, 33208, -138079, -117672, 191694, 288959, -212101, -598325, 114836, 1099385, 271388
OFFSET
0,3
COMMENTS
With 1 prepended, and up to sign this is the q-deformation of 12/5. See Leclere and Morier-Genoud. - Michel Marcus, Jul 01 2021
LINKS
Ludivine Leclere and Sophie Morier-Genoud, q-deformations of the modular group and of the real quadratic irrational numbers, arXiv:2101.02953 [math.NT], 2021. See Example 2.7 p. 6.
FORMULA
a(n) = a(n-1) - 2*a(n-2) + a(n-3). - Michael Somos, Sep 18 2012
a(n) = -A000931(-2*n - 1). - Michael Somos, Sep 18 2012
G.f.: (1+x)/x^3 - 1/( Q(0) - x )/x^3 where Q(k) = 1 - x^2/(x^2*k - 1 )/Q(k+1) ; (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 23 2013
a(n) = (-1)^(n-1)*(A077979(n) + A077979(n-1)) = A077954(n) - A077954(n-1). - G. C. Greubel, Jun 29 2019
EXAMPLE
G.f. = 1 - 2*x^2 - x^3 + 3*x^4 + 3*x^5 - 4*x^6 - 7*x^7 + 4*x^8 + ...
MATHEMATICA
CoefficientList[Series[(1-x)/(1-x+2x^2-x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, -2, 1}, {1, 0, -2}, 51] (* Harvey P. Dale, Feb 18 2013 *)
PROG
(PARI) {a(n) = if( n<0, polcoeff( (1 - 2*x) / (1 - 2*x + x^2 - x^3) + x * O(x^-n), -n), polcoeff( (1 - x) / (1 - x + 2*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Sep 18 2012 */
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x+2*x^2-x^3) )); // G. C. Greubel, Jun 29 2019
(Sage) ((1-x)/(1-x+2*x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019
(GAP) a:=[1, 0, -2];; for n in [4..50] do a[n]:=a[n-1]-2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 29 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved