login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141576
a(0)=-1, a(1)=0, a(2)=1, a(n) = a(n-1) - 2*a(n-2) + a(n-3).
2
-1, 0, 1, 0, -2, -1, 3, 3, -4, -7, 4, 14, -1, -25, -9, 40, 33, -56, -82, 63, 171, -37, -316, -71, 524, 350, -769, -945, 943, 2064, -767, -3952, -354, 6783, 3539, -10381, -10676, 13625, 24596, -13330, -48897, 2359, 86823, 33208, -138079, -117672, 191694
OFFSET
0,5
REFERENCES
Martin Gardner, Mathematical Circus, Random House, New York, 1981, p. 165.
FORMULA
From R. J. Mathar, Aug 25 2008: (Start)
O.g.f.: -(1-x+x^2)/(1-x+2*x^2-x^3).
a(n) = A078019(n-2), n > 0. (End)
a(n) = -A000931(-2*n + 3). - Michael Somos, Sep 18 2012
EXAMPLE
G.f. = -1 + x^2 - 2*x^4 - x^5 + 3*x^6 + 3*x^7 - 4*x^8 - 7*x^9 + ...
MATHEMATICA
Nest[Append[#, #[[-1]] - 2 #[[-2]] + #[[-3]]] &, {-1, 0, 1}, 44] (* Michael De Vlieger, Dec 17 2017 *)
LinearRecurrence[{1, -2, 1}, {-1, 0, 1}, 50] (* Harvey P. Dale, Feb 06 2024 *)
PROG
(MATLAB)
function y=fib(n)
%Generates difference sequence
fz(1)=-1; fz(2)=0; fz(3)=1;
for k=4:n
fz(k)=fz(k-1)-2*fz(k-2)+fz(k-3);
end
y=fz(n);
(PARI) x='x+O('x^99); Vec((1-x+x^2)/(-1+x-2*x^2+x^3)) \\ Altug Alkan, Dec 17 2017
(Magma)
I:=[-1, 0, 1]; [n le 3 select I[n] else Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Sep 16 2024
(SageMath)
def A141576_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( -(1-x+x^2)/(1-x+2*x^2-x^3) ).list()
A141576_list(50) # G. C. Greubel, Sep 16 2024
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Matt Wynne (mattwyn(AT)verizon.net), Aug 18 2008
EXTENSIONS
Extended by R. J. Mathar, Aug 25 2008
STATUS
approved